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PERTURBATIONSOLOTIONSFOR THE INFLUENCHOF

FORWARD FLIGHT ON HELICOPTERROTOR

FLAPPING STABILITY

By Wayne Johnson* J_

O. S. Army Air Mobility R_D Laboratory
Moffett Field, Calif., 9403S

St_RY

The stability of the flapping motion of a helicopter rotor blade in
forward flight is investigateds using a perturbation t_chnfque which gives
analytic expressions for the eigenvaluess including the influence of the peri-
odic aerodynamic forces in forward flight. The perturbation solutions are
based on small advance ratio _ (the ratio of the helicopter forward speed to
the rotor tip speed). The results are valid to approximately _ = 0 ._, which
covers the forward speed range of most helicopters. The rotor configurations
considered are a singles independent blade; a teetering rotor; a giaballed
rotor with threes four, and five or more blades; and a rotor with N
independent blades. The eigenvaluas of a constant coefficient approximation
to the flapping equation are obtained by an expansion in _s and are compared

_ with the perturbation solution including the periodic coefficients. The con-

I stant coefficient approximation with the equations and degrees of freedom inthe nonrotating frame represents the flap dynamic reasonably well for the
. lower frequency modesj although it cannots of course, be completely correct.

The transfer function of the rotor flap response to sinusoidal pitch input is
examineds as an alternative to the eigenvalues as a representation of the

,- dynamic characteristics of the flap motion.

_., INTRODt_ION

The fundaengal motion of helicopter rotor blade is flapping motion:
I first mode out of pl_e (vertical) displacement from the pl_e of rotation of

the rotor. For an articulated rotor this motion is rigid body rotation of the
, blade about a hinge at or near the center of rotation. For a cantilever rotor

it is elastic bending motion, primarily about flexibility at the blade root.
Due to the high centrifugal forces on the blade_ the mode shape for first mode

i banding of a blade with cantilever root restraint is nearly the same as for
_ the rigid body flap _tion of a hinged blade; it is the difference in the

natural frequencies of the cantilever and articulated blade,s; that is j of
" priory significance for the flap dynamics. This flapping motion of the rotor

t

' °Research Scientist_ Large=Scale Aerodynamics Branch, MASA=AmasResearch
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has a basic role in helicopter stability and control, blade loads, vibration,
and in most other areas of helicopter behavior. An important aspect of heli-
copter rotor flapping dynamics is the dynamic stability of the motion in for-
ward flight. Besides the question of high speed stability, this topic also is
of interest for its implications on the decay of transient motions of the
blade, for example, in response to control inputs or aerodynamic gusts. Any b
significant degradation of the blade stability and response to control due to
forward speed will have important effects on all aspects of the helicopter

! behavior.

In hover (zero forward speed), the aerodynamic forces on the rotor blade
pro¢ide the flap motion with high damping, hence, good stability and fast
response. The motion of the blade in hover is describable by constant coeffi-
cient linear differential equations, which may be analyzed to obtain the
dynamic behavior by the standard methods of linear system theory. In forward
flight however, the aerodynamic forces on the blade introduce time varying -
specifically, periodic around the rotor azimuth - coefficients into the linear

: differential equations describing the flap motion. These periodic coeffi-
L_ cients are due to the once-per-revolutionvariation of the free stream veloc-

ity seen by the rotating blade when the helicopter has forward speed. Systems
described by periodic coefficient equations require a considerably more

, involved analysis in order to investigate their stability and response to con-
trol. Appendix A discusses the behavior characteristic of periodic coeffi-
cient systems, and presents some of the results of the mat_ _matical theory of
such systems. Often a direct numerical integration of the equations of motion
is used as either the most or the only practical solution method; the mathe-

, _ matical theory of periodic coefficient equations has also been used for the '

,I.:{ analysis of rotor dynamics in forward flight.
The flapping stability of a rotor in forward flight has been investigated .

in a number of publications (refs. 1-20). The primary reason for the frequent
i reexamination of this one problem is the search for a satisfactory technique

for the treatment of the influence of the periodic coefficients in the differ-
ential equations, for even to determine the stability of such an equation is a
much more difficult mathematical problem than uith constant coefficients.
Usually the flap stability has been determined by numerically integrating the

_"A equations of motion, and then using the results of Floquet theory to find the

I eigenvalues (roots) from the transient solution over one period (refs. 2, 4,
5, 7, 10, 12, 15, and 18; the references usually describe the mathematical

1 theory required for the method). There have also been a number of solutions
using the methods of perturbation theory (refs. 5, 6, 9, 14-17), us%ng an

, analog computer to solve the equation (refs. 8, 11, and 20), and a solution
using the classical methods of the analysis of Hill_s equation (ref. I). The
reverse flow region of the rotor is important in very high speed forward

, _ flight, and several investigations have considered the aerodynamics of reverse
_ flow and its impact on the flapping stability (refs. 5, 7, 8, II, 12j 14, 15,

and 19). Pitch/flap coupling of the blade motion is another import factor
i which has been treated (refs. 2, 3, 8, 12, 14, 15, and 17). A number of the "

!. _ studies have extended the stability analysis by adding other degrees of

; _ freedom besides rigid flapping to the blade motion description: flapwise (_

_ elastic bending of the blade (refs. 4, 5), blade torsion (refs. 5, 9, 11), _ r-'_,_@_

)

1974023388-005



blade lag motion (refs. I0, 16), or the flap motion of the other blades of the
rotor (ref. 13). There is, however, still wor'_that may be done with just the
problem of flapping stability, particularly since most of these studies have
only presented ntmerical results.

This report investigates the effect of forward speed on the helicopter
rotor flapping stability and response to control. A solution for the stability
is obtained by a perturbation technique which is reasonably straightforward,
and which provides analytic expressions for the eigenvalues of the flap
motion. The solution method is direct enough so that it is possible to con-
sider here a number of rotor configurations, in addition to the problem of a
single independent blade which is the subject of most of the literature. The
perturbation method to be used here is known as the method of multiple time
scales. It is described briefly in Appendix B, but in fact the method is best
discussed by example, of which there will be several here. For more informa-
tion on the mathematics of this perturbation technique and others, the reader
is dLrected to reference 21 (and to ref. 14, which disc-_ssesthe techniques
specifically in the context of the problem of rotor flapping stability). For
the speed range of most helicopters, the advance ratio _ (the ratio of the
helicopter forward speed to the rotor tip speed) is a small parameter; a maxi-
mum of _ = 0.4 to 0.5 may be assumed. Therefore, a perturbation solution

, based on small _ may be expected to be applicable over the entire range of
interest for most helicopters. Most of the present work will be concerned
with the small _ results, although the stability at high u (around 1.0 to
2.5) will be briefly discussed. For the range of speed involving small
advance ratio, u = 0.0 to 0.5 or so, a perturbation solution to order _2 is

' satisfactory. It is therefore possible to neglect the effects of the reverse
I I _ flow region on the rotor (since they are of higher order than u2 . see

_ ref. 8), which results in a considerable simplification of the aerodynamic
i forces which must be considered.

With the great difficulties involved in the mathematical analysis of
periodic coefficient differential equations, it is natural to consider the use
of a constant coefficient approximation to the equations describing the sys-
tem. That is, the periodic coefficients are replaced by their average values,I
so the equations of motion are reduced to constant coefficient equations which

_' I ma_,be easily analyzed by the standard techniques. The validity and applica-bility of the constant coefficient approximation to several of the rotor con-
figurations considered here will be investigated. An expansion of the

ii eigenvalues for small u will be found, for comparison with the perturbation
solutions including the periodic coefficients.

•

The following topics will be considered in this report. First, the }
stability of the flap motion of an independent blade will be investigated; I

. that is, the case of a rotor with a fixed shaft, so that the motion of any one t_ blade is independent of that of the other blades of the rotor. A perturbation
solution (for small _) will be found for the influence of forward flight on

L the eigenvalues. This analysis will be followed by a summary, which will
:. collect the results for the eigenvalues. The behavior of these results will
} be discussed, and examples given of their application. Next the flap stabil-

_ ity of a teetering rotor will be investigated, followed by a summary and
b

, 3
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discussion of the results. Then a gimballed rotor will be considered, for the
cases of three, four, and five or more blades. The description and behavior
in the nonrotating frame of a rotor with N independent blades will be given;
it is more appropriate to make the constant coefficient approximation in the
nonrotating frame since some of the influence of the rotating periodic coeffi-
cients is retained. Next, the constant coefficient approximation in the
rotating and nonrotating frames will be considered, and the results compared
with the solution including the periodic coefficient influence. Then the
transfer function, that is, the response of the flap motion to sinusoidal con-
trol inputs, will be investigated, including the influence of the periodic

aerodynamic forces in forward flight. The transfer function is an alternative
to the eigenvalues as a representation of the dynamic characteristics of the
system. Finally, some of the previous work with this problem will be
discussed.

NOMENCLATURE
i

A constant in the order _ solution for 6

CI,C 2 constants for the I/rev critical region

D secular equation parameter, defining the root behavior near
the critical regions

, H transfer function

.., Kp pitch/flap feedback gain, Xp = tan 63

I. m blade index, m = I, . .., N

MR flap moment due to flapping velocity

'., MB flap moment due to flapping displacement 6 }(,
Me flap moment due to pitch control e

N number of blades

r blade radial station

R blade radius

;_ S blade flap degree of freedom

80,_I,B2,... coefficients in expansion of B as series in

Slc rotor tip path plane pitch degree of freedom @
)
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Bls rotor tip path plane roll degree of freedom

BO rotor coning mode degree of freedom

vector of Blc,BlS degrees of freedom

7 lock number of the blade

_O,TI,T2,... coefficients in expansion o£ y as series in

63 pitch/flap coupling parametp=

A(_) denominator of the hover transfer function

Ay Y " YO _"

., 0 air density

n blade flap mode shape

e blade pitch control

eigenvalue

_0 order 1 eigenvalue (the hover limit)

advance ratio, helicopter forward speed divided by rotor tip

tt I speed

i , _corner _ at boundary of critical region
°

i _1,_2 corner _ for 1/rev critical region
J

blade flap natural frequency (rotating, per rev)

t
._ _ blade azimuth angle; nondimensional time variable

j _0,¢1,_2,... time scales, _n = un_ I

1 _m azimuth angle of the mth blade

' _ frequency i

fl rotor rotational speed

,._ ('_ complex conjugate; for the transfer functionsj magnitude of
the input and responsei '

)

i' _ ( ) time dezivative (when dimensionless, the derivative with

i respect to _) _'
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The equations and parameters used in this analysis are dimensionless,

based on the air density p, the rotor rotation speed fl, and the rotor
radius R.

PERTURBATION SOLUTION FOR HELICOPTER ROTOR FLAPPING STABILITY j,

Equation of Motion

Consider the first mode flap motion of a single blade of a helicopter
rotor. The rotor shaft is fixed so there is no coupling of the blades through ._

the shaft or control system. Then each blade is independent of the motion of

the other blades. The equation describing the flap motion in the rotating
frame is

8 + v2B = y[M_ + MSB + Mo(O - KpB)] (I)

This is the equation for small perturbations of the flap motion from a trim
state. Only blade pitch control (also a perturbation from the trim state,

that is, cyclic and collective control as required for the given thrust and

forward speed) is included as an input. The degree of freedom r_:presenting

the perturbed flap motion is 8. For an articulated rotor 8 is the angle of

rotation of the blade about the flap hinge. In general, (i.e., for a canti-
lever rotor, or an articulated blade with flap hinge offset) the blade out of

plane deflection is 8n, where n(r) is the mode shape of first mode flapping,

' normalized to unity at the tip (at r = I). The blade pitch control perturba-

, tion is e; it is input by the control system, as rigid pitch motion of the

blade about a feathering axis at the blade root. So e is the pitch change

of the blade all along its span. The dot denotes the derivative with respect
to the blade azimuth angle _, which is the nondlmensional time variable.

The first term on the left-hand side of equation (i), 8, is the flapping

inertia. The second term, _2B, is the flap spring, which has structural and

_ centrifugal contributions. The parameter _ is the rotating natural fre-

quency of the flap motion (per rev since frequencies are nondimensionalized by

fl). For an articulated blade, that is, a flap hinge with no offset or spring

, restrain, o --i; this is entirely the centrifugal stiffening. A blade with
structural restraint (cantilever root, or a hinge spring), or with the flap

, hinge offset from the center of rotation, has _ > I; _ - I.I to 1.15 is
typical of a cantilever rotor, and u = 1.03 to 1.05 for an articulated rotor

with hinge offset. The right-hand side of equation (I) is composed of the

aerodynamic flap moments, due to the flapping velocity and displacement, and .
the blade pitch control. Mechanical pitch/flap coupling is includ%d, tha+ is,

',_ feedback control of the form A8 = -KpS. This feedback is usually accom- :

1 plished (for articulated rotors) by mechanical arrangement of the flap hinge ,
;. and pitch form equivalent to rotation of the flap hinge by the _ngle 63, s_

I Kp = tan 63. Positive Kp. (i.e., _3 > O) is negative feedback, which intro-
duces a positive aerodynamlc spring into the flap equation through the '

coefficient MO. '__ " ""
i

, ,_
, 6 '. :

A
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The factor v is the rotor Lock number, defined as y = QacR_/Ib (where
is the air density, a is thc blade section lift-curve slope, c is the

blade chord, R the rotor radius, and Ib is the moment of inertia of the
flap motion). The Lock number represents the ratio of the aerodynamic forces
to the inertia forces on the blade; y typically has values from 6 to 10 for
cu,-renthelicopters. The left-hand side of equation (1) is the blade aero-
dynamic flap moments due to flapping and pitch control. Neglecting reverse
flow, and assuming the mode shape is n = r, then the aerodynamic moments are

M_ = - + _ _ sin

JMB = g + g U sin , + (_ sin _)2

where u is the rotor advance ratio, the ratio of the helicopter forward
speed to the rotor tip speed; for current helicopters, the advance ratio at
maximum forward speed is typically between 0.3 and 0.5. The neglect of
reverse flow is valid to about _ = 0.5, for reverse flow adds order u_
terms to the harmonics of the flap moments. Hence, neglecting reverse flow is
consistent with the present small _ perturbation analysis, which will be
carried to order u2

The equation of motion then, substituting for the flap moments and
dropping the pitch control forcing terms to obtain the homogeneous equation,

' ' becomes

i

f
The derivation of this equation may be found in the literature, for example
in reference 8, which also considers the reverse flow aerodynamics. The only
parameters are the flap natural frequency _, which is always I or slightly

, above; the pitch/flap coupling Zp, which is frequently zero for helicopter
main rotors; the Lock number y, a measure of the relative streng*.hof the
aerodynamic forces on the blade; and the forward speed U. For the hover

i limit, u = 0, equation (5) reduces to a constant coefficient linear differ-
._ ential equation. For forward flight, i_ introduces periodic coefficients into

the differential equation. The s, ability of a system is defined by its eigen- i

values, or roots; there are two for thi_ sf,cond-order equation. The s'cability
of the Zlap motion will be examined for _A'ecase of small advance ratio, by
means of a perturbation technique to hand:,_ the influence of the periodic ['

/ coefficients due to forward flight. _

t, 7
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Hover

In the hover limit, _ ffi O. the equation reduces to

The eigenvalues X of this cc._tant coefficient differential equation are
obt&ined from the characteristic equation

which has the solution

These roots are usually complex conjugate pair, that is, the radicand is
positive. For that case, the two roots lie on a circular arc in the X plane,
with center at ReX = -Kp and radius dv2 + Kp'2,so the circle goes through
the imaginary axis at ±iv. The real part of the roots is given by y only,
ReX - -y/16, which then determines the location of the two roots on this arc.
The root locus for varying y then consists of the portion of this circle to

, ' the left of the imaginary axis (since y is positive), plus the real axis
i I from -® to -Kp. At y = 0 the roots are at X = ±iv on the imaginary axis.

For y the roots approach X = -® and X = -Kp (which notice is the center
,, of the circle). The y locus intercepts the real axis at X = -K ./_2 + Kpz ,

(the center of the circle plus its radiu_), when yl16 = Kp + ¢_2P+ Kp2. For
, y still larger there are two real roots, that is, the radicand of equa-

tion (S} is negative; for smaller y the roots are a complex conjugate pair.
For Kp = 0 this intercept occurs at y/16 - _, hence at y approximately
16, which is quite large for current helicopters. Negative pitch/flap

_i t coupling Kp (positive feedback) is required for the intercept to occur at-I

i more usual values of y.
With two real roots, the branch of the locus going to X = -Kp will go

into the right half plane - become unstable - if Kp < O. This root is on the
real axis, so passes through the origin (X = O) to go into the right half

, plane. That is, a static instability, or divergence, occurring due to the net
spring rate being negative. The stability boundary is crossed at
y/16 _ -v21Kp, and the flap motion is divergence unstable for larger y. This
may better be viewed as a limit of Kp:

V 2

, Kp > - _ (6)

g .

/ required for stability. At this boundary, the other root _s at X - v2/Kp _ _'_"_-'-

(hence stable, since Kp < 0). _ ._
' 8 _ :

i
1 "
I '
i
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Hover root locations which will be of particular interest are those where
the fnrequency is near a multiple of _/cev. The hover root has a frequency of

h/rev for y/16 - Kp�_2 + Kp2 - (1/4). For gp - 0 or small, this means
y app=oximately 14, so the hover root frequency is above h/rev usually the

hover root has a frequency 1/rev for y/16 • Kp+__ -'-T-[. For Kp = 0
or small, this means y must be small. Since _ _ I, there is only one

crossing of Im_ = 1 or h/rev by the y locus (except for the case _ = 1,
whem the locus starts at ImX = 1 for y • 0, and will have a second crossing

if gp > 0).

The natural frequency of the flap motion is _n 2 = v2 + (y/8)gp. Thls ts
mainly given by the structural and centrifugal stiffening, that is, by the

frequency v; it depends on y only as it influences _:heeffectiveness of

pitch/flap coupling. Negative pitch/flap feedback, Kp • O, adds a positive k

aerodynamic spring and so increases the effective flap spring rate. Notive

that _ • 0 gives the criterion for divergence of the flap motion. The

damping ratio is _ = (y/16)/_n. Hence, the flap motion is very heavily

._ damped in hover, with ¢ typically SO percent critical damping, due to the
high aerodynamic damping.

Expansion in U

Consider a perturbation solution for the stability in forward flight at

small u. Using the method of multiple time scales (as described in Appen

, dix B), the behavior of the system is exm_ined for _ of the order i, u-l ,

_-2, etc.; that is, let ,' @, _I = _, _k • _2_, . .. Then the time
I derivative is
i

_ + _ _ _2• �"

Expand B as a series in u, each term defending on all the time scales _n:

I S • So(_o,_l,_2,..)+ _Sl(_o,_1,...)+ .

, emd also expand the parameter v as a series in u:

Y • YO + I_Yl + 1j2y2 + " " "

This expansion of y is a _ay of quantifying when y is near certain ,_

" critical values; that is, if Y0 is some critical value, and Y1 • (Y'Yo)/_

- is order i, then y is order _ near Yo" The quantity y is still the

parameter given, hence th_s decomposition-into Y0, YX, Y2, . changes
with ta.

Now 8, d/d_, and y are all ._xpanded as series in _. _h. ese expansions
' are substituted into equation (5), m:d all terms of the same order in _ _"

|'|
2 I

i
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cnllected, ass_inR that all the coefficients i. the expansion are of the same

order. A fundamental assumption of the method of multiple time scales is that

the 8n must all be the same order for all tht time scales _,.. All the
terms of like order in u are collected and separately set to zero, to obtain

the equation that starts the analysis at each order.

Order I Results

The order I tex,._ of _qaation (3) give

a26o ¥°a6° (v _9.) "'"__ + + Kp 60 = O (7)

a,o 2 8 a,0

The solution of this equation is

_- 60= Re[601(_01 ' *2' ")eX°*°] (8)

where the root X0 is

X0 = i-_ + i 2�-_- Kp - (9)

i The convention will be followed that X0 is the root with positive frequency;

the other root is the conjugate _0. Then to order I the equation of motion,

! and so the roots, are just the hover limit. Since 80 is a fuuction of all
the time scales, equation (7) is a partial differential equation, which

, determines 60 as a function of *0 only. Thus, 801 still depends on _I'

_2' etc.

_. Ord=r u Results

The order u equation is

., 2 3,0 3'I 8 a, 1 _-u sin *0

" o)+ c,_S *0 �lp+ Kp sin , 8 0 (10)

:1

Thxs is a differential equation for 61 (_o), forced by the order I solution

i 80(00); substituting for BO, it becomes p * _"_.

I0 ._
s ,"

! •
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m

= X° + _ + W rXo + Kr'_ao :,
,¢

,o[+ T_ 1 i(X0 -'- 2KD 801 e(x0+i)@0

+ _2 [i + i(_o + 2Kp)]801e(X0-i)*0

+ conjugate (11)

The right-hand side has a term of the form A1eX0$0 due to the B0 solution,
where A1 is independent of ¢0- But the left-hand side is the same as the
order 1 equation (eq. (7)), so it has the same homogeneous solution e X0*0.
Then the solution for 81 is of the form

(12)

The forcing of equation (10) by its own homogeneous soIution produces the
second term in B1, which is order _0 compared to the solution for 80. Su

' as @0 increases, 81 will become arbitrarilT large compared to 80, which

, , violates the assumption that all the terms 8n in the expansion of g are
the same order. This situation can only be avoided if the secular term A1,

-- the coefficient of the homogeneous solution forcing equation (i0), is
' identically zero.

Assume for now that X0 ± i # X0; then the periodic coefficients do not
contribute to the secular term of equation (!0). Setting the secular term to

_. zero gives a differential equation for 801(_I):

or

B801 .,
XlSOi : 0 (14)

where

!/II J
! )'

V .C
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Y1
-_ (t 0 + Kp)

_1 = -
2iIm_ 0

The solution of this equation is B01 = 802(_2,. .)e I_I, so the solution
for B so far is _

= Re[_o2c,2,. .)e_°_° �H�*OCt) C15)

The eigenvalue to order u is then

X = X0 + U_I =" + i 2 + _ Kp - (16)

L That is, _1 is just an order u perturbation of the hover root, due to the
' order u expansien of y. To order u then, the eigenvalue remains just the

hover value, with no influence of forward flight at all.

The assumption that T O ± i # X0 means that ImX0 _ ½/rev. This

requirement then is that the hover root X should not have a frequency near

½/rev; "near" means being able to write the hover root as _0 plus an incre-

ment, such that when _0 has a frequency of ½/rev, I - _0 is order
, small. As U increases then, the distance from ½/rev which considered "near"

increases. The analysis will return to the case ImX0 = _/rev later.
i

With the secular term removed, equation (I0) becomes

a_--_0 + 8 a_ 0 v2 + Kp B1

_  o12[i-iCXo �2Kp BO O

l _ YO12[i + i(10 + 2Kp)]801 e(10"i)*0
i

+ conjugate (17)

: The solution of this equation is

{ Yo ..r(x°+i)*° (x0-i),_}B, = Re S11(_i)exo¢o 1.2-8o, ..+ IA+e + A e (18)

12 _ ._

'_

t,
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where

1 ¥ i(t 0 + 2Kp)
A± = ±2Im10 + 1

The second term is the particular solution, which with the secular term _

dropped is now the same order as Bo. This completes the solution to order _;
the solution so far is Bo($0,_l) and fll(_o).

Order v 2 Results ...

The order u 2 equation is

]

a261 + --- + + sin _0
= 2 _¢o_¢_ 8 a_ -6-

(_ x_ Xo o)+ COS _0 + Kp -_- + Kp -_- sin _ fll - F

a26 o Yo aBo
a280- + + u sin _ _ \T "6- sin _0* _ + 2 'a#0 ;3¢'2 + 8 _}¢'2

,o 0)]+ COS _0 + -_" sin 2_0 + Kp + + sin _0 - T cos 2_ flO
i

(19)

The solutions to order u for 60 and fll _re substituted into this equation,
and the coefficient of the homogeneous solution eI0¢0 - that is, the secu-

I

¢_ tar term - are collected. Assume for now that 10 _+2i # 10, that is,
[mA0 # i/rev; it has already been assumed that the hover frequency is not near

½/rev. Then the secular term is

a611 _1811 = + k2 + " 80 ekl_l

_'_1 __--_--2 2ilml 0
(20)

_. where _2 zs the order v 2 term in the expansion of the hover root:

AO + BII + _212 = - _ + i 2 + Kp - + O(u 3) (21) -

.4

, 13 "< I:
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Regarding this as a differential equation for 811(_1), it is fo,ced by its
own homogeneous soluticn eXl@l, qe.ting the secular term of equation (20)
(i.e., the entire right-hand side) _o zero gives an equation for 602('P2):

- �tY° z"i

_802 Kp _ \_l i(X 0 + 2Kp)(A+ - A_)
+ + 802 = 0 (22)

%&2 _2 2ilmX0

Thus, the eigenvalue to order u2 is

X = X0 + UXI _ _2 2 - 2iimXo

+ u2i IKt,
(,-,

or to order u 2 this is

+ (i+ _ Kp-i-'_6_2 (24)
}, = - --Y-+ i

16 - 9 _2 + _ Kp - -

, Then to order U2 - and for y and v such that the hover frequency is away
from ½/rev and 1/rev - the influence of forward flight on the eigenvalues is
simply a small (order u2) change in the frequency. The first effect in the

' frequencl just corrects the (y/8)Kp spring term to account for the increase

of the mean of KpMo with _. The second effect of u is entirely due to
the periodic coefficients. This order u 2 change in the frequency is in fact

r quite small for u out to 0.S or so, as the examples below will show. There

_&. is no influence of forward flight at all on the damping of the root.
(

I This expression for the uigenvalue was derived assuming that the hover

root. are a complex conjugate pair; it may be shown, however, that the same

expression is valid for y large enough that the two roots are real, that is,

when the radicand is negative. A point of particular interest is where one
branch of the locus on the real axis crosses into the right half plane, that

is, the divergence stability boundary. The criterion for this boundary is

that X = 0, which from equation (24) gives

v2 2

, 14
I

I
I
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or since -(y/8)Kp is an order u2 distance from _2 the criterion on Kp
for stability is

(1+ Kp, . 16 �T/(2s)

The u effect on the right-hand side (the periodic coefficients) dominates

that on the left-hand side (the average of KPMO). So the critical value of
negative Kp, beyond which the locus lies in the right half plane, is actually '-

increased by _; the hover criterion on Kp is then conservative in forward
flight. That is the opposite conclusion as would have been reached consider-

ing just the averaged coefficients. In any case, however, the influence of
forward flight is only order _2 small.

Equation (24) also gives the effects of p on the boundary between where
_. there are two real roots, and where the roots are corjugate pairs. This

boundary is given by ImX = 0, which to order _2 is

Y---= (Kp + /_'2 + gp2 , p2 _ (26)
16 _¢_ + Kp2

For Kp = 0 this reduces to simply

J

I Near ½/rev Frequency

t Now return to the case when the hover root frequency is near ½/rev. IflmX0 -- 1/2, then X--0+ i -- h 0 and the periodic coefficients contribute to the
order u secular term, The criterion ImX 0 = 1/2 means

T

Y0 _r_ 1I-'6--Kp + + Kp2 - _ .

-Cince v = YO + UYI + • ., that means y must be such that _ - Y0 is

_ order u small. The order i root is then X0 = -(Y0/16) + (i/2), and the
order u secular term is now

2 Y1 YO --
X0, _.A+ =

, @*I -8- (xO + Xp)801 + I-'Z 1 - i(lo + 2Kp _'01 0

ISI },

• I
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Or

_801 /_O YO YO_*I X1801 + 1-_ 6 Kp - _-_i g01 = 0 (28)

where here, since ImX0 = 1/2, the order _ expansion of the hover root is J"

Y1 YIIYo p)xl = - I--6-iT Y_- K .

s-

The _01 term is the periodic coefficient contribution to the secular term.
The solution of an equation of this form is given in Appendix C. The solution
for 801 depends on the quantity

- L\192 -6-Kp +

=[7(_-_- KP)]2 _ (_7(_ 2 _ TKPYo + 4Kp9 {29)

Now if D2 > 0, the solution for 801 has terms with time behavior like

i

-{Rell-+iD)_1 -u(y1/16)_+iuD_
, e = e

and then 8o has terms like
(

_o_o -(y116))_+i)[(i12)+pD]801 e - e

< I

The damping is unchanged, and there is an order _ change in the frequency,due to the periodic coefficients when the hover frequency is near _/rev. If
D2 < O, then 801 has terms like

I

e'(ReXI+D)*I= e['U(Yl/16)-+nD]*

and then 80 has terms like

[- (y/16)"uD],l.,+(i/2), 7

" 8Ole_°i° - e _i

' There is an order _ change in the damping, both more and less stable, while
i the frequency remains fi_ed at ½/rev.

i 16
#

I
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The influence of _ on the roots near ½/rev frequency then is first an
order _J change in the frequency towards ½/rev, with the damping at the hover
value. When the roots reach ½/rev, the frequency remains fixed while there is
an order _ change in the damping. One root is stabilized, the locus moving
to the left on the X plane, but the other is destabilized, it moves to the

right. This type of behavior of the roots is characteristic of periodic sys-
tems (as discussed in Appendix A). Indeed it appears here due to the contri-
butions of the periodic coefficients to the order u secular equation when
the hover frequency is near ½/rev. There is in this case a c_tical _gion,
inside of which a change in the flap damping occurs. For many problems with
periodic coefficients, the system is unstable inside such a region. In this
case, however, the hover damping, ReX = -¥/16, is quite large; and the change
in the damping is only ±uD, hence, order u small compared to the hover
damping. So the critical region is a region of stability degradation rather
than instability (for small u, i.e.).

The boundary of the critical region is given by D2 = O, or

K W = - iz/ TKP* 4Kp2 (30)

Since Y = Y0 + _YI, write Y = Y0 + Ay where y is the value such that the
hover root is at _/rev. Then if the hover frequency with y is near ½/rev,
Ay = y - Y0 must be order u small. The boundary of the critical region

' is then

(Yo p) AY +i_ YO /x)2 YO' _-_- K _ = _ " T Kp + 4Kp2 (31)

Considering the _ root locus, then the critical region boundary is the value
of _ for which the locus reaches ½/rev frequcncy, and is just about to
encounter the stability change at _/rev frequency. From the behavior of the

_N- _ root locus, this boundary value will be denoted Ucorner, where then

1 - 16
_corner = (32)

. ._/v 2 YO- _ Kp �4Kp2

For Kp = 0 this reduces to Ucorner = ±(A_l16)(3/2v). In general, this

" equation gives the boundary of the critical region on the Y - u plane. The
eigenvalues are

i

_ _. °

17 '_

/
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A = _0 + uReXl - i_D

(33)

which may be written

A_ YO _co_ner
I =- 1-_+ _- i i--62 - K I - (34)

For v = O, this reduces to

X = .._--+i _-_- 2 Y(_-_ )__ - 16 _-- i 16 - Kp )
r"

which ts just an order u (i.e., order Ay) expansion of the hover root from

_/rev frequency at YO'

Near 1/rev Frequency

' Conszder now the case with the hover root frequency near 1/rev. With

' i ImXo = 1_ then T 0 + 2i = XO, so the periodic coefficients contribute to theorder u* secular term. The criterion ImX0 = 1 means

' _0116= Kp + _v2 �lp2 i, and the order I root is then Xo =-(Yo/16) + i.

For this case ImX0# 1/2, so the order u results are applicable; then the_4
root to order u is known (i.e., X = _0 + UXl), and now the ord_ _2 influ-

ence is sough'c. The secular term of equation (19) becomes, for ImXo = I:

( )¢k'¢ a811 XlSz1 = | a-'_- + -_'2 + ,._ 2 . T Kp + 4Kp2

,o ]1! -lp _-_ 802 oXI_I

, #

" YO } _-02e_i* 1" 3-_ (I - ilp) C35) t
, I

f . |

j

18
i
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j_

°_

The 802 term is the contribution of the periodic coefficients to the

secular term when ImX 9 = I. The secular term of this equation is the coeffi-

cient of eXI_I, hence, it is exactly ".sbefore (eq. (24)) - giving the same
result for the eigenvalues to order u2 - unless kI = kI. In that case,

which requires that XI be real, the entire right-hand side is the secular
term of equation (35), including the _02 term. Since _"

YI "¢I(Yo p)xl= T6 + iy6 -T6 + K ,

requiring ImXl = 0 means that _I = O; and so Xl = 0 in fact. For the
periodic coefficients to contribute to the order u2 secular term requires

then that ¥ = Y0 + u272 + ., that is, y must be such that Y - Yo is
order u2 small; this quantifies what "near" l/rev frequency means. For a

given u then the hover frequency must be closer to the critical value than

was required for the 'i/rev region. The effect of forward flight near I/rev

_. frequency is smaller than near h/rev, only order _2 compared to order u
for the latter.

With Y1 = 0, the secular term of equation (35) becomes

2802 Y2 i 2 + - Kp 802
, _,---_+ i i--6(xO + Kp) + _-_ - Kp 4Kp _'6

2

, [-,,0-o)(-'00<--.+ _-_+ iKp g i _ . _-6+ 21 T6" 2Kp + g02 = 0 (36)
!

The solution for 802 depends on the quantity D (see Appendix C) given by

""' " v2 Kp * 41(p2 . 2

i D2 ")'0 Y2 - _ - Kp-- T6 -K T6 + 12

' - \32 7 | " 9 2K + P " T - 2Kp (37)

The behavior of the roots is similar to that near ½/rev, except that all

•_ changes due to forward flight are here order _2. There is a critical region,

inside which there is an order u2 change in the damping of the flap motion.

For small u, the damping is the same as the hover root while there is an }

order u2 change in the frequency, towards I/rev. At the boundary of the |

critical region the root reaches I/rev frequency; and for still larger _, __,_.J

, 19 I_I.
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inside the critical region, the frequency is fixed at 1/rev while there is an
order _2 change in the damping, one root becoming more stable and the other
less.

The boundary of the critical region is g_ven by D2 = 0. Since

"( = Y0 + uPY2 �",write Y = Y9 �t_ywhere _0 is the value such that I
the hover root is at 1/rev. Then, xf the hover frequency with _ is near
1/rev, _ : _ - Y0 must be order u2 small. The critical region boundary
may then be wrxtten

Yo ) _ u2 (s8)- Kp 16 -- {C1 -+ C2) '

where

_)2 YO

_" C1 = _ (_)2 - _'12KP + 4Kp2 + Kp 1-_Y0

16 16 (_)2_r7(v2 1)2 Yo.... _ + Kpi_ (39)

.0/i >l.E.0.0>7, C2 " "_- �_(_- 2Kp �P--_"(1-'_2Kp

, 16 ,_2 16 (40)
' = _ 1 + -if-, - I + gp - -tj-(vz " i) - 2gp
#

Then the u root locus reaches the critical region boundary at
Ucorner -- _ _ or B2, where

(
IIUl ,u2 (41)

I Cl -+C2

For K7 - 0, this becomes

!

u,2 u22 = , (42) ;

-_ -It I+ - - _.I

' li20 "

_2

m,
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The eigenvalues are now

X = XO + _2ReX2 = i_2D

Y + i - (_-_ Kp)- C - C2 2-

:_-_¢ + i - i A_,' YO Kp 1 2 1 (43) ,-
16 _ 16 - B1 _2 2

For u = O, this reduces to simply an order AO (order u 2) expansion of the

hover root f-om 1/rev at Y0"

_" Summary, and Discussion of the Results

Thl_ sectton summarizes the results of the perturbation solution for the

influence of forward flight on the helicopter rotor blade flapping stability.
Fhe expressions for the eigenvalues are collected from the analysis above•
The behavior of the roots is discussed, in terms of the _ root loci and the

crltical regions on the _ - u plane. These results are for the shaft-fixed
stabllitv of an individual rotor blade.

l

' HoveP.- The hover limit, _ = O, has the eigenvalues

/ (';, X = - ± i v2 * _ Kp - _ (44)

These roots are usually a complex conjugate pair, located at ReX = -y/16 on

the circular arc with radius v¢_ , Kp2 and center at X = -Kp. Forward
_i flight, _ • 0, introduces periodic aerodynamic forces into the dynamics, which

radically influences the behavior of the eigenvalues and the analysis tech-
nique required to obtain them. A perturbation method based on small u has

been used to obtain explicit expressions for the roots when _ > 0, includingI

the effects of the periodic coefficients. It is an order _2 analysis

• (conszstent w_th the neglect of the reverse flow region effects), which is

valid to approximately _ = 0.5.

For_z,d _2ight, moay from critical regions.- When the hover root
frequency ts not too close to a multiple of ½/rev, the roots to order p2 ire

8 _ (4S) ,
¢ t "

21 ,i
i }.
J

|
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There is only an order _2 change in the frequency, which is quite small even
up to u = 0.5. This expression applies in particular when there are two real
roots, that is, when y is large enough so the radicand is negative, so it
gives the crlterion for divergence instability, including the influence of
forward flight. The divergence boundary is given by where one branch of the
locus on the real axis goes through the origin into the right half plane. The
boundar_ criterion is then _ = 0, for which equation (45) gives the criterion _"
for divergence stability as

(1 • _2) _ Kp > -92 + b T - (46) ,_

This is a limlt on the pitch/flap feedback allowed; the divergence instability
occurs when Kp is sufficiently large negative (positive feedback). A con-
stant coefficient approximation to the equation of motion, using the average

_. of the coefficients, includes only the effect of the mean of M0 on the left-hand side of equation (46); that is, a conservative approximation for this
case.

Forward flight, near _/rev frequency.- It is characteristic of a system
with periodic coefficients that for certain values of the parameters there
occurs a degradation of the stability. Typically this occurs where the basic
eigenvalue - here the hover root - has a frequency corresponding to a multiple
of one half the fundamental frequency of the equation coefficients. Specifi-

I cally, consider when the frequency of the hover root of the flap motion is
near ½/rev. There occurs then an order u influence of forward flight. When
the frequency Is near _]rev, equation (45) is no longer valid Cor _, and the
following result must be used instead. Let YO be the value of y for which
the hover root would (with the given v and Kp) have a frequency exactly ½1rev;

#

that is, Yoll6 = Kp + /_2 . Kp2 . (I/4). Write Ay = y - Y0" Then, if
Ay/16 is ordex u small, the eigenvalue is given by

" " I-_ i 16 - Kp)/ I _)- Uco-rner (47)

where

i

_c_mer - . _ (48)

•,_._-/_ 2 YO- -_-Kp + 4Kp2

The subscript "corner" refers to the behavior of the u root locus on the
plane, as discussed below; it _s the boundary of the critical region. For

Kp • 0 thxs result reduces to YO/16 = ¢_2--TFW, and Ucorner • (Ay/16)(5/2v) , _--_,
for the boundary. _ -;

, 22 ,_
t

.... ..................... _ ......................... -# - _ .=.--=.
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lhls solution exhibits the .,".':,_il:g behavior. If u < u u mer, there is

.:_ _rdcr _ chonge in the freo:.. _ -, to,_ard _/rev, while the real part of the
root ret,_ains fixed at the _;_,- , i;_e of -y/16. At u = Ucorner the roots

reach !-m_ : ½/rev. !:r,r . :ner the free 'ency remains fixed at ½/rev
while the._...'s ml order L. _.:...,ge in the damping; ReX is increased for one
root and Joe'-eased for the ,, ,e_.. This behavior of the locus near _"
lm), :- _/rev is character' :.._t _c of periodic systems (Appendix A). _q_ile there
is a stabillty degradatiou tf u is large enough (greater than Vcorner,
which decreases with 8-,, :.e., as the hover root approaches '_/rev), the
reduction tn damping is order u small. The hover damping, ReX = -y/16, is
quite large for usual values of y, and so stability is maintained for small
u, even with the influence of the periodic coefficients.

For_apd f_£ght, neap i/r,ev fpequenoy.- Similar behavior is exhibited when

the hover root frequency is near I/rev. Let Ay = y - YO, where now Y0 is
the value of v for which the hover root (with the given v and Kp) is

exactly at I/rev, that is, ¥0/16 = Kp * Iv 2 + Kp2 - I. Then if Ay/16 is
order small the roots are given by

X = -_._ + i - - K 1 - (49)
p2 2 "_

where the corner u are
a

16 (so)
! U12_22 = CI + C2

E_pressions for Cl and C2 ar_ given above (eqs. (39) and (40)), along with
the results for the limit Kp = O. The behavior of the v loci is like that
near ½/rev, except that here all changes are only order u 2 For small u

_'( there ts _ order U 2 change in the frequency, toward l/rev, while there is

no ctange tn the real part from the hover value. For u = Ul or u2 (only one
will be real) the roots rearh ImX = l/rev, the critical region boundary. For

still larger _, the frequency is fixed at 1/rev while there is an increase of
the real part of one roo_ and a decrease of the other. The stability degrada-
txon ts only order v 2 small, so again the flap motion will remain stable for
small u and reasonable y.

, Comparisons with numerical solutions for the flap roots (froN calcula-
,_ tions by the author, and from the literature, e.g., ref. 12) indicate that the i

" perturbation solution to order _2 is accurate to about u = 0.5. This ?

solution then covers the range of interest for most helicopters. _t_.Root _ _ov_ovoapdfi'l,£gh_.- Typical _ root loci are shown in

figure 1, for several cases of _ and y. The cases considered are: (a) v • 1 _ ,

'.i.!_

I
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_d y - 10; (b) v = 1.1 and y = 6; and (c) v = 1 and y = 5. The pitch/flap
feedback Kp = 0 for all three cases. Then the hover roots, u O, are
located on a circle with radxus _ and center at the ori_kn. Ca_e (a) is a
typzcal articulated blade; with the large y and _ - 1, the hover frequency is
well below 1/rev. Hence, with u > 0 the locus encounters the _/rev critical

region. Case (b) is a typical cantJlever blade (i.e., a hingeless rotor); _with v • 1 and a lower y, the hover frequency is above 1/reJ. Hence, the
locus encounters the 1/rev critical region. Case (c) is an example -_ the
behavior when the hover frequency is away from any multiple of ½/rev. So the
only tnfluence of _ is a very small - order u2 - change xn the frequency.
The loci shown in figure 1 thus co,,er all the cases of awal from the critical
regtons, near ½/rev, and near 1/rev. They illustrate the form and magnitude ._
of the tnfluence of forward flight. Specifically, thr behavior in the
crzttcal regions at _'re,- and 1/rev frequencies is shc_n; and the large -
order u - effect cf the ½/rev region, ;Lo.,Ithe quite small effect away from all
critical regions may be seen.

- u /9_aru_.- The eigenvalues depend pri'.aril/ on y and u, so the above
results may be presented as contours of constant ReX and the constant Im_
on the Y - u plane. This is the presentation found in much of the litera-
ture. Suet, plots are shown in figures 2 to 5 for Kp = 0 and _ = 1, 1.05,
1.1, and 1.15, respectively; and for u - 1 and Kp ffi 0.1 in figure 6. They
are based on the perturbation solution given here. The expressions for the ._
critical region boundaries in terms of the corner u for thu u root toci
may be rearranged, to give the boundary in terms of y for a given value of

,. Writing v = Y0 * Ay, the two real root region boundary is

)
Ay la2 ;'0-'dJ- Kp + + Kp2 + Kp= -- (Sl)

4

where Y0/16 = Kp + /v 2 - Kp2. The ka/rev cr tical region boundary is

Yf,]_2v2 YO 2_. A,¢ _ ," " T Kp + 4KI..
-' _-_- +u ------ ('_2)

-_- K!)

where _0/16 = Kp + /_'2 , Kp2 . I/4. An,i the l/rev cri,'._cal region boundary
is

ay u2 Cl ± C2 (s3)
,.* Tg " Yo

Kp

I where Vo/16 - Kp , /£2 , Kp2 . 1, and the constants Cl _m C2 are given ' .
above (eqs. (39) and (40)). This expressi_m shows that CI gives the offset ' :, .• I

;4 ii
t

: N5
i

- '" - .......... - .....: ,;=- ...."- _ __i_ " -
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of the 1/rev critical region boundary frGm YO' and C2 gives the width of
the region; the ½/rev region has no offset to order v, so is syngnetrical in
A_ about Y0" For Kp = 0 these boundaries reduce to

VoA__16= _2 ._ v3 with 1--6= v (54)

Ay _ _-u 2 YO /_2 1 (55)I--6- _ _ with i-'6= -

Ay U2f 16 2_V_ 1+ 1 / _ =6 1l--g= - 1 I)+-IFi- A "

with Y__O= _/_. i (56)
_ 16

respectively. The boundaries in figures 2 to 6 were constructed using these
expresslor.s Only the critical region and real root boundaries are shown
here, but expressions for constant ReX and ImX may also be obtained from the
perturbation solutions. The presentations of the Y - U plane results given
in the l_terature usually include the ReX contours at least (since only

, numerical results are usually available, the y - _ plane is the most

t efficient way to indicate the stability trends with y and V variations).

No instabilities are encountered on the Y - u pl_le, for the range of
parameters shown. A divergence (static) instability is encountered at hig,
y if Kp • 0, and an instability in the critical region (usually the 1/rev
region first) is encountered for much higher u (around 2). The critical
regions, combinations of y and u where the frequency is fixed at ½ or 1/rev,
are the principle effect of the periodic coefficients. Notice they encompass

tN I( more and more of the y range as v increases, that is, as the periodiccoefftctents increase. The two real root region (ImX = 0, i.e., two roots on

I the ReX axis) is due to y being large enough so the flap motion has super-critical damping; while it is influenced by the periodic coefficients, it is
not the same type of phenomenon as the critical regions (the roots for this
case are g_ven by the same expression as for two complex roots away from the _.
uritical regions).

A horizontal line on the Y - u plane is a line of constant y, hence, ?:_
the varxation of ReX and ImX as such a line is traversed gives the foot _

locus for varying V. For example, consider the V locus for case (a) above,
'l _ _ = 1 and y = 10; the y = 10 line is indicated on figure 2. A_ u increases _

from zero, the line remains parallel to ReX = constant lines, so ReX
remains fixed at the hover value. The ImX = q/rev critical region comes
closer to the horizontal line, indicating that the frequency of the root _'
approaches ½/rev. At the corner U, the locus crosses into the ½/rev region. _'_

25 ._; •
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For higher u the locus is in the critical region, so the frequency r_ains
fixed at ½/rev while for each point in the region there will be two values of
Re_, one more and one less stable than the hover root. The constant y lines
for cases (b) and (c) are also shown in figures 2 and 4; tile behavior of the
Y - u plane along these lines ma> be compared lo the _ loci shown in
figure 1.

Figure 7 shows the y - _ pl,ne for v = 1 _md Kp = O, from a
perturbation solution equivalent to the present one but including the order

' u2 correction to the ½/rev critical region boundary. That solution, from
reference 6, gives the ½/rev boundary as

f

Ay ±u 2 _2 i01-'_= _ (ssa)

to order u2. Figure 7 may be compared to figure 2, which is based on the
present solution, hence, only to order _ in the ½/rev region. While the

L order _2 influence is not negligible for _ = 0.5 or so, the major effects
of forward flight are contained in the order _ solution. The results of
reference 6 are discussed further below.

High u behavior.- For _ larger than 0.5 or so, a numerical method -_
must be used to calculate the eigenvalues of the flap motion. It is also
necessary then to include the reverse flow effect in the aerodynamic flap
uoments. At very high _ (above 3 to 4, say) a perturbation solution based on

' an expansion in _-1 is possible (ref. 14). Such a solution is of less use

than the small _ solution, at least for current helicopters; it does, how-ever, give some insight into the high v behavior (refs. 14 and 15). For
around 1, only numerical solutions are possible, unless some other parameter
is used for the perturbation variable (such as y, as in ref. 14).

At u = 2,2 or so - the exact value depends on v, y, and Kp, but there
is not much variation for the range of parameters of current helicopters - a
flapping instability is encountered. It occurs in the 1/rev critical region,

I the root being destabilized by the periodic coefficient influence crossing the
_" imagxnary ax_s into the right half plane. The y - u plane for v = 1 and

Kp = O, with u out to 2.5, is shown in figure 8; this plot is a composite of
the results available in the literature. Figures 2 and 7 give the y -
plane for the same v and Kp, but for B to 0.5 only. The behavior of the
critical region boundaries at high u, and the high _ instability in the
1/rev region are shown. The high u behavior of the u root loci in
figure 1 may also be inferred from figure 8.

For case (c), v - 1.1 and y = 6, the _ locus enters the 1/rev critical i
" region at small _. The locus remains in that region, one root moving to tile i

'_ left and the other to the right, until the latter branch becomes unsta%le _!

(crosses the imaginary axis into the right half plane) at high p. Fo. i
case _b), _ = I and y = 6, the locus shows a decrease in frequency up to L

, u = O.S. But at somewhat higher _ the loci turn around and the frequency L
,_ begxns to increase, for at about u - i.I the roots encounter the I/rev '

;._ 26
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critical region - see the y = 6 line in figure 8. In the i/rev critical

region for higher u, one branch of the locus is destabilized, until an
instabilit7 is encountered at about _ = 2.35.

For case (a), _ = I and 7 z 10, the u loci also encounter the high p
instability in the i/rev critical region, so first the roots must get from the

½/rev region to the I/rev region (see the y = i0 line in figure 8). As

increases above 0.5, the loci in the ½/rev region eventually turn around, the
real parts of the two branches then approaching each other instead of diverg-

ing. At u about 1.55 the roots get back to the hover value of damping, and

then break away from the ½/rev region. The frequency of the roots increases

toward i/rev then, while the damping is fixed; that is, the roots are complex

conjugates again. When the roots reach /rev they enter the !/rev critical

region. The transition from ½/rev to I/rev frequency occurs very quickly,
during a very small p increase, because the corridor between the two criti- _

cal regions is very narrow at this point (fig. 8). In the i/rev critical

region for higher _, one branch of the locus is destabilized then, and

eventually a flapping instabJT[ty is encountered at about u = 2.25.

N-BLADED ROTOR EQUATIONS OF MOTION

Consider a rotor with N independent blades, with no coupling by chart

motion and only the excitation due to the blade pitch control. The flap
motion of the rotor is described by a set of N equations, each of the form

, of equation (31:

I
, _m) �C_�_U sin _m)8(m) �{92+pccs ,m(_*_U sin *m)

' I

where 8 (m) is the flap degree of freedom for the ruth blade, m = 1, . ,N. _
The azimuth location of the mth blade is _m = _ + mA_, A_ = 2_/N. :'

For a teetering or gimballed rotor, the blades do not act independently, 1
so the rotor motion is not described by these equations. They may be used,

"-'_- however, to derive the appropriate equations of motion.

%
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TEETERING ROTOR

Equation of Motion

Consider a teetering rotor: a two-bladed rotor with a single flap hinge

at the center of rotation. The two blades are not independent then, rather
the rotor flaps as a whole, one blade up and one down. The equation of motion
must be obtained from equilibrium of moments on the entire rotor rather than
on individual blades. The coning motion of the rotor - both blades up or both
down at the same time - is reacted by the structural restraint at the blade
root. That is, it is a cantilever mode type of motion, for a very stiff
blade, so with a very high frequency. In the teetering motion, however, the

blade acts like a hinged rotor, usually,in fact, with no hub spring at all so
the flap natural frequency _ = 1/rev (although the general case of _ _ 1
will be considered), Consequently, the coning motion of the rotor will be
neglected as a higher frequency motion, and only the teetering degree of
freedom considered.

_" Let 8 be the degree of freedom for the rotor teetering motion, so

8(2) = 8 and 8(I) = -8. Equilibrium of flap moments on the entire rotor is

given by half the difference between the 8(2) and 8(1) equations of motion, i
Then, the equation of motion for the teetering rotor flap motion is

: t 8 + _ _ + 2 + _ _2 sin 2_ + Kp(_+ _ _2. _ _2 cos 2 8 = 0 (58)

I

Notice that all 1/rev harmonics drop from the coefficients of 8, because
' with the teetering motion the rotor has a period of only _ with respect to

the aerodynamic environment. As a consequence, all the order u terms have
dropped, leaving ol_!y the order v 2 influence of forward flight on the

f coefficients of the flap equation.

' I Hover I

1 For the hover limit _ = O, the roots are as before (for independent
blades) :

L

- X = .. -_-+ i _2 + Kp - (59) i
'F 16 -

t

f

i '
, ,, 28
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Expansion in u2

Only order _2 terms appear in the flap equation, so an expansion in _2
is used now:

_ _ _ + _2 _ _
_ _ _-_2 + . .

8 = 80 + _282 +
te_J_

Y = YO + I'12y2+ " "

Order 1 Results

This is the hover limit again:

 0,,0 0+ =

_002 8 _0

with solution

,. 130= Re[8020#2,. .)e )'050] (61)

where the order 1 eigenvalue is

'r_, /v
70 YO (7o_2

X° = _'6 i 2 + _ (62)- + T Kp \16]

,,i

Order g2 Results

The order _2 equation is

:2,

I
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-L_ __,o
_2BO YO _}BO Y2 _BO

= + + #_2 _bO ;)kb2 8 ;)_b2 8 _b0

o)+ sin 2_0 + Kp + Kp T- lp T cos 2_ 80

_B02=I(_o+_)_. [_<_o.<,_._,_]_o_}._o_o
Y_ 2e(XO+2£)_o

+ _-_ (-£ - Kp)B0
(,-

YO 0-2i)_0
+ _-_ (i - Kp)802 e(k

* conjugate (63)

Assum£ng that T 0 + 21 # k0, that is, ImX0 _ I/rev, then the secular term is

' (_o._)_o_
or

t a802

_02 X2B02 = 0 (64)

where

YO YO

T ()'o + Kp) + T l(p
_2 = "

_. 2iimXo

The solution is

; e),2_2 "
i SO2 = 6)Ot_(_Jm+,.• •) (65) "'-.'_..;
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m

- .....h_ ............................. lJ, .... , m q
• T

So

XO_O+X2_2
B = Re(8oge ) + O(p 2) (66)

Then, for ImX0 # 1, the eigenvalue to order _2 is

X = X 0 + g2X 2

The only influence of forward flight on the eigenvalues of the teetering rotor
is then the i,crease in the mean of KpM0 (to order u2, and for ImX0 # 1).

_ This result is substantially simpler than for the independent blade, with much
less influence of the periodic coefficients. The difference is the result of
the internal cancelling of the 1/rev, order u flap moments for the teetering
rotor. [n fact, if Kp = 0 there is no order u2 influence on the roots at

' all, they remain at the hover values; if Kp > 0 there is an order U2

increase in the frequency, due to the increased effectiveness of Kp acting
through _e.

. The divergence criterion (X = 0), becomes now, for stability

(I �U2) _ Kp > -v 2 (68)

. This is a strzcter requirement on Kp than for the independent blade (i.e.,
the boundar_ ts reached at a negative Kp of smaller magnitude), but the [

difference ts only order u2. The two real root boundary (ImX = 0) is

_b

16 Kp2 /v2 , fp2 (69)

or for Kp = O, _/16 = _. _

: Near l/roy Frequency

Return now to the case X0 + 2i • X0, that is, ImX0 • I, the hover! , , ,,

I frequency near l/rev. This means _0/16 • lp + /_2�lp2 _ I, and the order I
i root _s _0 = -(v0/16) + i. Now the periodic coefficients contribute to the _

i secular term, to g_ve --,__

: _ _'_, 31 _ It
, .f _;

'_ _._
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8B02 X21B02 i Y0
2¢2 + _-_ (i + Kp)_02 = 0 (70)

where since Im_0 = I, _'_

[(_ 1,o]>'2 = Y2 i Y2 YO Kp Kp- 16 + _ 16 + + _ "

rf_"

The solution depends on

(_,o ,ol+ Kp) + Zp "r'6"J" k3--'Z/(1, Kp2) (711

The critical region boundar) is given by D2 = O, or writing Y = YO + Ay,
with Ay order _2 small: ._

In terms of the u locus, this gives the corner _:

l

i U12U2 2 = T_

YO YO _ +
; Kp i--6 ± _" Kp2

A

This expression is similar to that for the 1/rev region boundary of thed

'_ independent blade (eq. (41)), but with

I Yo }
; CI i Kp_

' (74)

YO/I+
i C2 _2" lp2
s

that is, with considerably less influence of the periodic coefficients. The
,¢

t eigenvalue is ..._.

;I I
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= ZO + g2ReX2 " i_2D

= " 1--6+ i - i _-_ _'6" K I - i _2 (75)2 5

' which is xdentical to the independent blade result (eq. (43)), except that the

corner u have different values. For Kp = 0, the criterion Iml0 = 1

reduces to Yo/16= _ - I, the I/rev boundary is p12,_22 = ±2(Ay/16), and

the elgenvalue reduces to

:- _ + i- i_vC_-1 T (76)

For , = 1 (and Kp = O) this is the same boundary, as for the independent
blade, For _ > I, the critical region has a smaller width, and is not offset

(CI = 0 still, since Kp = 0).

Summary

The influence of forward flight on the teetering rotor differs from that

' on the xndivldual blade principally in that: there is no ½/rev critical
region at all; and the periodic coefficient influence is much simpler. Away

from the I/rev region, the roots are given by

/,= 1/66± i 2 + (I + U2) _Kp - (77)

including the forward flight influence to order u 2. The corresponding

_._ criterion for divergence stability is
|

I (I • U2) _ Kp > _v2 (78)
I

There is no _/rev critical region, so this expression holds also when the
hover frequency is near _/rev. A critical region is encountered only if the

hover frequency is near I/rev. That is, if AY = Y " YO is order _2 small,
#

: , _ where v0/|6 = Kp + /_2 + Kp2 _ 1, then the roots are

I =- /_+ i- i _(_- K I- _) -U2 (79)

P
53

L
i,

I
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where the comer _ are

°
_12,U2 2 = '_- "_'- K

Ci ± C2 (80)

and the constants CI and C2 are given above Leq. (74)). For Kp = O, this
reduces to u 2 = ±2(Ay/16)co_er

t
The 7 - u plane bo_daries are, writing Y = YO + Ay, for the two real

root region

Ay u2 Yo Kp= (81)
_2+ Kp2 ..

where Yo/16 = Kp + _2 + Kp2; _d for the 1/rev critical region

YO _ +Kp + _ Kp2
Ay _2 _"- (82)
1-_= Yo

1--Kp _

where Y0/16 = Kp + _2 + Kp2 _ 1. For Kp = 0 these be_daries reduce to

' Ay VO

I ]_= 0 with ]-_= v (83)

_y i _2 with YO _ (84)i-G=±T =

respectivel:'. These results may be compar_ i with the Y - U plane boundaries

( of the independent blade, as illustrated in figures 2 to 6. For Xp = 0, the
-I two real root boundary is now a constant y line, that is, a horizontal line;

I there is no ½/rev region at all; and the I/rev region is the same when v • I,
but narrower and not offset (CI = O) when v > I.

Consider the u root loci of the teetering rotor. When Kp = O, as in
figure i for the independent blade, then for case Ca) with v • I and y • I0,
and case (b) with v = 1 and y • 6 - that is, away from the i/rev critical

region - there is no effect o£ u at all to order _2. The locus remains at

the hover value. For case (c) with v = i.I and y • 6, that is, near I/rev,

' the behavior is basically the same as for the independent blade. However, the '

_- critical region is narrower now, and not offset, resulting in a higher value

for Pcorner (0.407 compared to 0.286 for the independent blade). Notice that

if the hover root frequency were below i/rev, then _corner would probably
decrease because of the absence of the critical region offset with the

teetering rotor; this is best seen on the y - p plane, as in figure 4. _"

; 34 k
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There is then considerably less influence of the periodic aerodynamic
forces on the teetering rotor flap stability, as compa_ed to the independent
blade. This is the result of the internal cancelling of all the 1/rev, order

flap moments. Specifically, there is no ½/rev critical region, because of
the absence of 1/rev harmonics in the coefficients; the 1/rev critical region

is narrower, in general, and not offset if Kp = O; and there is less influence _h
of u on the two real root boundary. If Kp = O, the two real root boundary
does not change at all with u; this corresponds to the absence of a ½/rev
critical region, which for the independent blade pushes the O/rev boundary up
(as in figure 2).

In fact, unless the frequency of the hover root is near I/rev - and the "_'
1/rev critical region is quite narrow, being only order u2 wide - then using
a constant coefficient approximation gives exactly the correct eigenvalues to
order uz. That is, if the periodic coefficients in equation (58) are simply
dropped - and they are the reason for all this perturbation analysis - then
the only effect of u retained is the increase of the mean of M0 by the

i factor (1 + u2); but that is the only effect that appears in the correct roots

for the teetering xotor anyway. This suggests that such a constant coeffi-
cient approximation may be an adequate representation for the teetering rotor
flapping dynamics (if the frequency of the root is kept away from 1/rev).

GIMBALLED ROTOR, THREE BLADES

Equations of Motion

Consider a gimballed rotor: three or more blades attached to a hub with
cantilever root restraint, and the hub to the rotor shaft by a universal
joint. The possibility of a hub spring is included, so u L 1 is allowed

i still. The blades do not move independently now, rather the entire rotor
moves as a whole about the gimbal bearings. There are two degrees of freedom
describing the rotor flap motion: longitudinal tip path plane tilt 81c and
lateral tip path plane tilt Sls. The variables describe the rotor motion in

b,.4 the nonrotating frame; _tc is defined positive for tilt forward, and Sls is
positive for tilt toward the retreating side. All other modes of motion of

i the rotor blades such the motion reacted the cantilever
as coning are by

root stlffness, so will be neglected as higher frequency motions.

The flap motion of the mth blade is given now by

B(m) =SlC COS _m + Sis sin _m (85)

,alp

The equations of motion for the gimballed rotor tip path plane tilt are
obtained from equilibrium of the pitch and roll moments on the hub. The equa-
tions may be obtained from the flap moment equilibrium for the mth blade
(eq. (57)) by the operators

I _ °,

b

I

_1%, e-
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N N
2 2

_ (. .)cos _m, _ E (" • .)sin _m (86)
_=1 m=l

The result of the summation operation depends on N when, as here, the equa- _
tions have periodic coefficients. For a three bladed gimballed rotor, N = 3,
the result is

I:lS L-2 - IJ I"_ COS 3_ Y---8 U _ sin 3%_J_81s

Iv2- 1+ _ _cos 3_ Y--(1+ _,22-) _1% cl

8 .  sin3 /B,
t'_' 1 - + U sin 3_ - 1 - U _"cos

= (87)

U _ cos 3_ _ (I + _IJ2) - ]j _sin 30ls l(pBls/

The cases of N = 4 and N __ 5 will be considered in later sections. The

; notation

I
r_,. \e 1s/ '

I
1 will be used for the degrees of freedom.

Hover .-

: , In the hover limit, u • O, the differential equation is

:. + �"_-0 CSS)

L-I _

i 2 _2 1 + Kp i
_. 36
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The characteristic equation £s

(_2 + 8_ _ + _j2 - 1 + Kp + 2_ + = 0 (89)

which has the solutions _ = _0 ¢ £ and their conjugates, where

II

is the rotating hover root. So the hover roots for the gimbal degrees o£
freedom, which are in the nonrotating frame, are just the rotating roots
+-l/rev frequency due to the transfer from rotating to nonrotating coordinates.
This hover result _NR ffi _R + i is true for any number of blades, in fact. In
forward flight the result is not this simple because the blades of _. gimballedi

rotor are not independent.

There are two degrees of freedom, hence, a total of four eigenvalues.
There is a high frequency mode with roots _0 and its conjugate, that is,
at frequency Im_0 + i/rev; and a low frequency mode with roots k0 i and
lts conjugate, that is, at frequency ImX0 - i/rev. The correspondence J
between the rotating and nonrotating regions is then as follows:

.Rotatingfrequency No.nrotatlngfrequency

, 0/rev 1/rev

l _/rev 1_ and 3/2/rev
l/tee 0 and 2/rev

i The 0/rev rotating frequency means two real roots; it includes the case of
divergence instability. The regions, boundaries, and behavior of the roots

• will be discussed in terms of the ro#ati_ frequencies, so that th_ results
may be compared with those of the single blade analysis.

'lb. The eigenvectors for the roots _0 + i are

(:)Slc (91)

that is, Blc/els •-+i; this corresponds to a wobbling or whirling m_tion of
the tip path plane.

: /

i Expansion in
t

i : Let

" ; 37
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-_- "' _ - - ' I IN IIIB --- ..................... iliililli J_ ............................ - ""

_ + _ _ g2_-T= _,_-"; _ '" _ + " '

j_
¥ = YO �_Y1+ _2¥2 + " " "

(

Order 1 Results

The order 1 equation is just the hover li,oitas usual:

, + 2 _2 . I + Kp--_-

,+ a¢O_ _ + 80 = 0 (92)
_2 _ 1 +_p

Th_ order 1 eigenvalues are then _ " X0 _ i and the conjugates, where

YO / (Yo)2 (93)
t _0 " " 1-6+ i °2 + "_'KP - tl"_'

is the order 1 rotating hover root.+ The corresponding eigenvectors are
' 8tc/81s = -+i, so the solution for 80 is

) The first term (subscript +) is t}.e high grequency mode, the second (subscript
-) the low frequ_,cy mode; gOl± are complex £_ctions oi the higher time
scales _lJ_2, etc_

, Order' u Results

The order U equation is

L

P
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o 2 _;_ -F Y 7-_

.o1_- _% • 2 _;o.[T'_ sin 3,0 - n cos3_o Jo
YO

28'08'i - _J a-_l L-_co=3,o T-YIY012sin 3,0 j]_-_O

8 +T sin3@0-KpTc°s 3@0 l

�I _0 ""

| YI +Y0 sln" . . Y0 . Y0 YI Y0
I

L- _ "_- 3_0 -_p-_ "c°s3_0 --6-c°s3%0+Kp'_--KP-6-sin3¢°_

*'._k

= 2X0+_) 3-_--i+-_- e(xO+i)_O

. (,)-i _- (X0 - i + 2lp)_Ol+ e(XO-2i)O0
I

i [(2 a'Ol- + _] (-:)e (XO-i)'O
J

I:)Y0 e(XO+2i)@o
+ +i _ (_'0 + i + 2Kp)801_

._i_"i + conjugate (95)
The secular terms are the coefficients of the homogeneous solution

i (-+:) e(_O+i)@o
j -,

; on the right-hand side of equation (9S). Notice there are two homogeneous .J

_. solutions now (really four, including the complex conjugates), as in equa- 1tion (94), and the coefficients of each must be set to zero. The resulting '

equations give the order u corrections to the roots for the high and low ]
frequency modes.

] 97402:3388-042



Assuming for now that ImX0 # _/rev, then the secular terms are

(2 80) @so1+ Y1X0 + _ + T (x0 + Kp)S01_+= 0

t
or

{ @8°I+ XIB01+ = 0 (96)
a¢l

where

YS-_(k0 + Xp) . ,

2iIm_0

The solution is 801+ = 802+(¢2,. .)e11¢1, so the solution for 60 is

[_,OoCxo'i)_o'l__ (i)(_o-i)_o+_i_(9,)
+ SO2- eSO = Re 02+ _-_

Hence, the eigenvalues to order p are
$

I. I = _0 + i + VlI

/, =-_+ i/ U2 +8_KP - ]-_ -+i (98)

which is just the rotating hover root +i sti11. With the secular terms set
' I to zero, the solution of equation (95) is

C) C)" '' , _I = Re 11+ e(L0+i)_0 + 811- e(10"z)kb0 :

I

+A+801+ e(x0-2i)o0+A-B01- * (99)
I

_, ,/b i

: _. where

, (X0_, Y0 + 2Kp ,_i)(_i) .

I" A_ = - I./ +_21ml0 - I '_, i,_,
i ! which completes the solution to order _.

40
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Order v 2 Results

The order u2 equation is

. 8 _2

["°_" _'L-_ _'-,._

2 L- iT.Y°cos 3_o Yx ¥0 sin s.'.l

_ _o_

+ / Y1 YO Yn YO ]_1

-- -- sin 3_0 .

Y0

- _--_ sinS_oJ

Y. i Yo...o7
]T+y_sxn 3_o -YTc°s 3_o _o Kp+yGKp -_ �h"+ Y1 / I _ /--+ ;0

ib. I L- i-2 COS 5_0 Y2 Yl . " 8_0 I Y2 Yo Yo

cos 3_0 +Kp _ sin 5_0 sin 3_0- Kp _ cos 3@0
�!

+ 130

sin 3_o-lp cos 3_0 - -_-cos 3_O-KP sin 3_

' !
' 1, 41
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j_

,o ,o .]}C)_2BOl++Y1 @8o1+_. (_0 +xP) +T Xp+]-_ (X0+2xP)iA 6o1+ e(_0+i)O0 ¢5+ _ 8 @¢1

[,o ]C)+ -_ (i + Kp)B01+ • (_0+i)@0

+ _ (-i)(I0 + 2Kp- i)Bil++ (-i)+ + i)A+ @*I

(**)[ .] }-Y1 YI e(XO-2i)*o
:i_ + _'_ (-i)(X0+ZKp-i)+ T (X0+Kp-i)A 801+

,,,,o,. .o .] IC)e.O-.,o+ -_-_+ (),0+lp)+Tlp+- _ (),0+2lp)(-i)A 801-

(**)[.o ] o.o-..o .,_ + _'K('i+KP)_ol-

{Yo Y[n (2 Y° i)_] _B°I-+ n i(10+2Kp+i)811-+ i+ AO+T+2 A a_l

4,. [Y1 Y! .] .}(i) e(X0+2i)¢ 0
+ _- i(X 0 + 2Xp+ i) +..-_- (X0 + Kp + £)A B01

1

t

+ conjugate (100)

4

Assm.ing that Im_0 _ I, the secular term is 1

' 42 : _!
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811+ ll_ll+)

, -"I}_802+ + A2 + "_- Kp + -_ (X0 + 2Kp)(+i)A

= [_--_2- - 2i_m_o 802+ e_l_l (I01) )

and the secular term of this is
v

,802+ -_- Kp + _ (XO + 2Kp)(+i)

--_-+ 12 + 2i_m_o 802+ = 0 (102)

It follows that the eigenvalues to order p2 are

[ ,o ,o l
= ti+ _0 +u_I +u 2 2 +i -_- Kp+_ (X0 +2Kp)(+i)A+

21m10

YO

/ _ (-Y-)216 i-'_(XO + 2Kp] (+-i)A+2Im_0
=+-i-_+i 2+(1 .._2i - (io_)

,I

Which may be reduced to

2 _2._. Kp+4Kp 2

"' v2-_- Kp+4Kp 22 4
' ( - i-_6+i 2+(I+u2)_Kp- +U 2 ....

, :+__._-( &H-

}I12

,
, and the conjugates.

,a-

_Ithough derived here on the basis of complex roots, it may be
i demonstrated that this expression is also valid when y is large enough so

that the rotating hover rc,)ts lie on the real axis. This single composite

, expression then is valid _ r all cases except when the hover root frequency is _
i , near ½ or I/rev. This result has some of the effects that have been seen for _,.

' _ 43I
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the independent blade: the factor (1 + _2) correcting for the increase in the
mean of KpM8 appears as usual, and the second order u2 term in the radicand
is like the corresponding term for the independent blade (eq. (24)), although
half the magnitude. There are also now some order _2 effects that give
quite new behavior, however. There is an order V2 change in the ±i shift of

the nonrotating roots. Secondly, the last order u2 term in the radicand _h
produces, for the case of complex roots (i.e., as written), an order u2
change in the damping: an increase in the damping of the high frequency mode,
and a decrease for the low frequency mode. This is quite different from the
behavior seen so far, where the damping has always remained fixed at the hover
value -v/16 when the roots are outside the critical regions. For the case of
the rotating roots being real (i.e., bringing the i inside the radicand) _
there is an order uz change in the frequency of the roots: the more stable
root going to highe_ frequency, and the less stable root to lower frequency.
These new effects will be seen again when the constant coefficient approxima-
tion is considered; a discussion ol their origin will be put off to that time,
since that is a problem of more general interest. The present discussion will
concentrate on outline the behavior of the eigenvalues produced by these new
terms.

Consider the order u2 influence of forward flight on the divergence
boundary. When the rotating hover roots are real - the divergence boundary
being a special case of that - the last term in the radicand of equation (104)
produces an order _2 change in the frequency. Hence

Re_=- 1_._.±_ +U2 94 ........_ (..__._2_ - _2_ (l+p2) _ Kp

Setting Reh -- 0 for the divergence boundary, there follows the criterion for
divergence stability:

The order u 2 influence on the right-hand side is just half the result for
the independent blade, so the criterion on negative Kp is more strict in
this case. The difference is only order u2, however. In the nonrotating !
frame, this divergence instability occurs at a frequency order u2 above
1/rev.

Consider now the behavior of the roots of the three-bladed gimballed
rotor near the boundary for two real roots (rotating). Recall the result for
the hover roots of individual blades, in the rotating frame; figure 9(a)

_. illustrates the behavior, for variations in y. For y/16 = Kp + ¢u2 + Kp2 thet
two roots meet at the real axis, and then for larger y they proceed in '

_ opposite directions along the real axis. The transformation to the
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nonrotating frame simply shifts this behavior by ±i, so that the above
behavior occurs at ±I/rev instead of on the real axis. lqaehover roots of
individual blades, will in the nonrotating frame thus have the behavior shown
in figure 9(b). This is also the behavior of the hover roots of the three-
bladed gimballed rotor, for y near the rotating real root boundary. This

should not be confused with the behavior of roots near a critical region; it j_
occurs here at ±i/rev because of the transformation to the nonrotating frame.
The critical region behavior involves two roots, one at positive frequency and
one at negative frequency, which after crossing the critical region boundary
proceed in opposite directions on the X plane. The behavior near _be real
root boundary involves four roots, two of which meet at 1/rev and two at
-i/rev; hence, the roots occur as complex conjugate pairs always. "

In forward flight (v> 0) the behavior of the roots for individual blades
in the rotating frame is the same as that of the hover roots (i.e., as shown
in fig. 9(a)), just with an order _2 shift. Since the blades are independ- -
ent, the transformation to the nonrotating frame can only shift the locus by
±i in forward flight as it did in hover; so figure 9(b) presents the behavior

_L of the roots of individual blades in the nonrotating frame for forward flight
" as well as for hover. The three-bladed gimballed rotor, however, exhibits

different behavior near the real root boundary in forward flight. Instead of
the two roots meeting and then proceeding in opposite directions at I/rev fre-
quency, the two branches of the loci only pass close to each other as illus-
trated in figure 9(c). That is, as _ increases, the locus intersection
pulls apart. In terms of the y locus at a given u > 0, as the branches
approach I/rev there is a ± order _2 change in the damping (with a corre-

, spending change in the conjugate roots, so this is not critical region
behavior); eventually the roots transition to more like the two real root
behavior (at I/rev frequency nonrotating), but with a ± order _2 differ-
ence in the frequency. Such behavior is, in fact, typical of the dynamics of
coupled degrees of freedom; the root loci do not cross, but rather only pass
close to one another, pulling farther apart as the coupling increases (in this
case, as u increases). The source of this behavior is the last term in the

; radicand of equatiofl (104) for X. There is, in addition, the order _2
change in the ±i term of equation (104), so all this occurs really at not

r quite ±l/rev.

i It follows then, that when u > 0 the three-bladed gimballed rotor does
not have a definite real root boundary. Rather there is a gradual transition
from primarily complex root behavior to primarily real root behavior. Examine

1 now the locus in the neighborhood of the real root boundary. Write

Y = Y0 + _2y^ where Y0 = Kp + iv2 + Kp2, so y is order u2 from the hover
real root bo(Indary. Look at the root near the i/rev frequency, and near the
-y/16 real part; that is, let A_ be defined by i

+ v " I'_+ _h (I06)

; Then, from equation (i04),

I
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/_(Yo p) _ 16 _ i Yo v2 (107)AL = P 1-_" Z - Kp - T _ -y

This may be separated into real and imaginary parts:

(ReA_)2 {imAm)2 U2[_(Y0 ) Y0 16 41 _- = 1--6"Kp - T Kp - T _ (108)

1 Y.

U2 -_v 2 (109)(ReAL)(ImA_) = -

The last equation shows that the locus on the AL plane (i.e., on the L
plane, but with a shifted origin) is a hyperbola. The point o£ closest
approach of the two branches occurs at " '

ReAL = -ImAX = ±_i_8_ (110)

and the minimum separation of the branches is there
J

21ALlmin = U g _ (iii)

{

The separation of the branches then is order _. This point of closest
i approach may be taken as the definition of the real root boundary for this

case. With ReAL = -ImAL, equation (I08) then gives the boundary as

,o'" Y_ g i-_ _" 2K _2 + 1--6"KP
S

16 YO
i-_" Kp

_ :! or

t • , J .-4

I Y Y0 u2 9 (I12) !

16 16 + _2 + gp2 i

For gp = 0 this reduces to y/16 - __ + _2(8/9_,o._'. Notice that this is the "i

: same as would be obtained if the last term _:,',._teradzcand of L (eq. (I04)) -
:_" which is causing all this behavior - were s,...__, ignored. Setting the
', radicand to zero without this term gives exa ' ' the above bo_dary The
:. boundary obtained is similar in behavior to tha_ of the individual blades; but

, again the second order u2 in the radicand of equation (i04) has only half !

the magnitude. Hence, the Ay of the boundary for Kp = O, for example, is _-only half as large as for the independent blade. " "

• J

I
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Near ½/rev Frequency

Consider now the case Im_ 0 = 1/2, when the nonrotating roots are at
3/2/rev and -½/rev frequency. The order v secular equation for BO1- is
unchanged for this case, hence, the low frequency mode (k0 - i) does not have

a critical region when the rotating frequency is near ½/rev. The order _ _
root is the same as equation (98) then, that is, there is no forward flight
_nfluence on the lower frequency root to order u when Imk0 = 1/2. The

, secular equation for B01+ is, however, changed for this case, and so the
high frequency mode does encounter the _/rev critical region. The complete
rotor behavior is given, of course, by both the low and high frequency modes
taken together; when the high frequency roots encounter the ½/rev region, the
entire rotor does, even though only two of the four roots participate in the
critical region behavior.

When ImX0 = 1/2, the order u secular term for BOI+ is

_)BOI+ X1BO1 + + --+ 2Kp + _'01+ -- 0 (113)16

50

, This is the same secular equation and D2 as for the _/rev critical region o£

the blade, follows then that the behavior is theindependent It root same as

that solution, specifically the expressions for the _ritical region boundary,
and for _ near the region (eq. (52) and (34)) are applicable here as well -
adding i to X to transform it to the high frequency mode in the nonrotating
frsme.

I Near 1/rev Frequency .

Consider the case Im_0 - i, so the nonrotating roots are a 0 and 2/rev.
The order _ analysis is applicable, since ImX0 # 1/2, and the order _2
analysis is correct for the high frequency mode even when Im_0 = 1. Hence,
the high frequency roots (near 2/rev frequency in the nonrotating frame) are _
given by the same expression as for the roots away from the critical regions _
(eq. (104)). The low frequency mode, however, (near O/rev nonrotating) has an _
additional term in the order _2 secular term when Im_0 = 1; instead of :_

_*_ , equation (I01), _II- is now given by

l
, 47

I
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3ell- Y1 _ll_ 1-[(2XO *_/ T_1 * T (Xo + KP)

= {( 2xO + _)@B02- + [ x12 + _L8 X1 + "_8 (XO + Kp)+ Y8-E Kp

, _ (X0 + 2lp)(-i)A B02_ e

Unless X1 is real, so _1 = Xl, the secular equation for B02-(_2) is the

_ same as before, however. Then, equation (104) holds for the lower frequency
mode also, except when the frequency is order v 2 from 1/rev (rotating).
Requiring kl be real means Y1 = 0; the secular term of equation (115) is
then

_Bo__I 'o (Yo_i 1(_o__ 'o 2Kp)
+ X2 " i T'6KP + kl-'Z] _ + _"\'iT)(- "IT+

', (_) 2 u2 ¥0 22
-i - -8--Kp + 4Kp Y0

6 -1602- + _ (i - iKp)_'02-= 0 (116)|
] O• SO
' 2

= T6- Kp T6*2" \ill * 24 Kp - (1 * lp 2)

t_ (117)
which has similarities to the results for both the individual blade and the .
teetering rotor. The boundary of the critical region is defined by D2 = O;

_' letting Y = Y0 �Aywith Ay order u2 small, then the boundary is

.' 1"_"N" K - ua(cl * ca) (its) !

l or in terms of the corner u i

I i,l-i! ,is i.
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Ay

ci -+¢2 (119)

This is the usual form, with now

' Cl = - _ - -- + Kp 1--6 (120)

_r,bJ

Yo /i
Cz = _ + Kp2 (121)

C2, which gives the width of the critical region on the y - _ plane, is the

same as for the teetering rotor; hence, the width is, in general, smallel than

,_ for the individual blade, except for _ = I, in which case the widths are
equal. CI, which gives the offset of the region, is similar to the individual
blade result. The first term is new, however, corresponding to the new order

u2 shift in the ±i frequency of the roots away from the critical region

(eq. (104)J; and the second telm_has half the magnitude, corresponding to the
second order _2 tena in the radicand of equation (104). The eigenvalue of

the low frequency mode is now

YO _ _2 Y1 _2 + + i_2D
' X = - 1--6 T6" " T6 2Kp _

i

;

8 - 11] +-i - -

I (122)

I So the eigenvalue also has a new term, an order u 2 damping change,
corresponding to the third order u 2 term in the radicand of _on (104).

) For Kp = O, the criterion for Im_0 = I reduces to YO/16 = ¢v2 - 1, 7

equations (120) and (121) become

1/Y°_2 (_) 2 _2 8 (_ 2 1)(V2 + 5) (123) '_c_.-gk_) - _r'Tr " !
• "v _

YO 1 _ (124) iI ' c2 -_-g

" Li ,
so the boundary reduces to

" 49 _
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Ay

_12,P2 2 = I-'E (12S)1
- _

and the eigenvalues to 1_

rLl- _ _

Compared to the individual blade result, the boundaries are identical if

- I, but if _ > I this boundary is offset more, with a smaller width, Com-

pared to the teetering rotor, the width is L._ same but the teetering rotor is
not offset even when v > 1.

Summary

For the hover limit, _ = O, the four eigenvalues of the three-bladed
gimballed rotor are

J

and their conjugates. For the hover frequency away from ll/rev or I/rev
(rotating), the roots to order _ are the same as the hover roots, and to

order _2 they are given by equation (104) above. The influence of forward
, flight consists of: an order _z frequency change, similar to the individual

i blade but with reduced magnitude; an order '_2 change illthe +_i frequency
; shift due to the transformation to the nonrotating frame; and a +- order _2

change in the damping of complex roots of the frequency for real roots. The

latter change has the effect of pulling apart the real root intersection of

.. the locus (at -+I/rev frequency nonrotating), so that the root loci only pass

, i close when u > 0 rather than actually intersecting (the separation is order .
' I u). The criterion for divergence stability is,in this case

�i

,,_: The ll/rev critical region is identical to that of the individual blades, j
_ Only the high frequency mode, at 3/2/rev nonrotating frequency, participates

in this region, however. The low frequency mode, at _/rev, has the same
' - behavior as it does away from the critical region - that is, no forward flight
i ,_ influence at all to order u.

i so

1974023388-053



j_

If Ay = 7 - YO is order u2 snm!l , where YO is the value required

for ImX0 = 1, that is, 70/16 = Kp + /_2 + Kp2 - 1; then the low frequency
mode, at O/rev nonrotating frequency, encounters the 1/rev critical region.
The high frequency mode does not participate in the critical region behavior;
its roots are given by the same expression as away from the critical region,
that is, equation (]04). The low frequency ro_5 are given by

i

, ,y< _
(179)

where the corner _2 _re

1-6\16 - KP)
gZ2,_2 2 = CZ ± C2 (130)

with C1 and C2 given by equations (120) and 4121) above. The behavior o£
the loci in the critical region is similar to what has been seen before with
the individual blades and the teetering rotor. There are now, however, order
_2 changes in the frequency and damping tin C1, and explicitly in ReX
above) corresponding to the changes seen away from the critical region, as
well as some changes in the magnitude of the fo_ard £1ight influence.

I
I

, The 7 - _ plane boundary for the two rea_ root region (±I/rev

I intersection nonrotating), writing 7 = Y0 + AY, is
T

':(-Kp./_2K:).Kp
;. 16 /_2 _ Kp2

t

'%.. where Y0/16 = Kp + /_2 + Kp2. This is only a so£t boundary, however, the

I point of closest approach of the branches when U > O. The _/rev criticalregion boundaries (5/2/rev nonrotating) are

J

Y0 /_2 YO&y _-_ - -_-Kp * 4Kp2
1--'6" ±_ (132)

YO
z-'_"Kp

_ where 70/!6 - Kp + /v 2 + 'Kp2'_ '(1/4); and the 1/rev critical region
boundaries (O/rev nonrotating) are

C ± C2
| _ ,_Y _2 1

•_.- Kp 4133)

, $!

. ..... . ..

v _ P

I
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where Y0/16 = Kp . /v ''_ + y.p2 _ i. For Kp ffi 0 these bo,mdaries reduce to

1,128 3 YO16 • ._.v with 1-'6" v (134) ,_
.J

, ,oF_16 " +_ _ _ with _-_ - - (155)

16 = p2 _O • _ (lZ6)

' respectively.

GIMBALLED ROTOR, FOURBLADES

The equation of motion for a four-bladed gisballed rotor are

, 8 -'2- zc

= (137)

The only forward flight effects remaining are order u2, the order u momen',
1 cancelling internally at the hub as they did for the teetering rotor. The

only periodic coefficients remaining are order _2 hence, only a I/rev
critical region is expected.

The hover result i_ identical to that of the N • 3 case; that result,

: p in fact, holds for all N >_ 3. Only order p2 terms appear in the equations

._, . of motion, so a._ expansion in u2 is used: _

?.
,.: 52

. !
I
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B 8 + 1J2 @_-_=_--_ _ �..

Y = YO + _2X2 + " "
1

The order 1 solution is the hover limit again, so is the same as the N = 3
result. The solution for _0 is

m¢

80 : Re 02+(¢2,..-) e(lO+i)¢o + 802-(¢2,. • .) e(XO-i)_

?.
(1383

'_ Order _2 Results

The order U2 equation is

' "[ 8¢02+ @TO .2 _ I + Kp

8280 T 2 _o + 72 bS0 P T+ Kp _-_ -_- + _ -_
80

= 2 _¢0 _¢2 Y0 _ -8"- _'_0 +/Y2 Yo

2 LT + T6" Kp -_-+ Kp3 Y0

I_J,

I._. Y0 Y0 Yo 07

Y0 sin 4¢0-Kp i-6cos 4¢0 - I--6cos 4¢,0 - Kp i-6 sin 4_

t + _l0 ;

oJ "Kp "1-6sin 4_0 " "['6sin 4¢0 + Kp i--6cos 4¢ "_3

,-,.

, !
,, 53
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jr

+ (i + Kp)B02 e + (-i + Kp)802 e [X0"3i)90

-](;/ [,o+ (-i + Kp)B02 e (lO'i)$O + 1-T (i + Kp)B02 •

+ conjugate (139)

Assuming that ImX0 _ 1, the secular term is

_802±
_$2 X2BO2t = 0 (140)

wheze

8 (_0 + Kp) + _Kp

12 = . 2iiml0
l

The solution is 802± = C0_±($_,...)e X2_2. Hence, the eigenvalues to order
! _2 are

X • X0 + _2X2 ± i

= ±J " i_ + i 2 + (I + _2) Kp - (141) ,

and the conjugates. This is the same result as for the teetering rotor roots
away from the 1/rev critical region. It follows then that the real root
boundary (at ±l/rev nonrotating) and the divergence stability criterion are

the same as for the teetering rotor, i

Near 1/rev Frequency
1

:, If the hover roo_s are order _2 from 1/rev frequency (rotating) - that 1[ is, ImX0 = 1 - then, the periodic coefficients contribute to the order _2 .
secular terms: --:_

' 54 _"_-

I

1974023388-057



@802± YO --

@_2 _2802± - i ,_ (i + Kp)B02± = 0 (142)

Comparing this with the teetering rotor 1/rev secular equation, it follows
that the four-bladed gimballed rotor has identical expressions for the roots

and boundaries of the I/rev critical region.

Summary

#
The behavior of the four-bladed gimballed rotor is the same as that of

the teetering rotor flap stability - except, of course, that the gimballed

rotor has four roots, in the nonrotating frame, hence, shifted by ±i from the

teetering rotor roots (rotating). As for the teetering rotor, it also follows .

here that the constant coefficient approximation to the equations of motion,

even in the rotating frame so the only forward flight influence retained is

the factor of (I + _2) in the mean of M8, gives exactly the correct
eigenvalues except near the i/rev critical region.

Away from the critical region, the eigenvalues of the four-bladed
gimballed rotor are

,I
and their conjugates. There is no _/rev critical region. The I/rev critical

region is the same as for the teetering rotor; both the high frequency and low
frequency modes (at 2/rev and O/rev nonrotating) participate in the critical

region behavior. The Y - U plane boundaries are the same as given for the
teetering rotor.

GIMBALLED ROTOR, FIVE OR MORE BLADES

I For a gimballed rotor with five or more blades, the equation of motion is _2

'°.

1= (144)

8 + _- U \Ols KpBls/
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So to order u2 there are no periodic coefficients when N __ 5. All the
periodic flap moments cancel internally at the rotor hub, and do not contrib-
ute to the net pitch and roll moments on the rotor disk. The result is a con-
stant coefficient differential equation for the gimballed rotor with five or
more blades. The eigenvalues of this rotor are given by the roots of the
characteristic equation of j,_

L
or -

2 + _ + v2 - I + Kp (i + p2) + 2X + - U4 (I + Kpz) = 0

(145)

As a constant coefficient equation, the eigenvalues are simply the roots of a _t

polynomial, although in this case it is a fourth-order polynomial, which may,
in general, only be solved numerically. Since the roots for the limit U = 0
are known, however, that is, the hover roots - a perturbation technique may
be used to obtain explicitly expressions for X including the influence ofi

_ forward flight.

• ' Only order U2 and ;,4 terms appear in the characteristic equation, so an
expansion in U2 is used. Write X • _0 + i + B212 + . . and the conju-

i gates, where _0 is the rotating hover root as usual:

_0 = " 1--6+ i 2 + Kp- (146)

j

The Lock number is also expanded as a series in _: Y = YO + P2Y2" +_i_" The, order I characteristicequation then has just the solutions X = _0
YO + i. That is, the order 1 term in the expansion of _ above is indeed the

i correct hover limit.

t

! Order _2 Results

The order u2 terms of the characteristic equation are

+ (X0 ±i) +Kp ˜0 +i) �X2+ -0 :.-4

I s6

... tN
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or

[ ](link0 ± 1) (2ilmk O) k2 + Kp +-_-(k 0 , Kp) = 0 (147)

Assuming that Imk 0 _ 1 when the lower frequency root k0 - i is being

considered, so Imk 0 - 1 _ O, then the solution is

Y---_-2(X0 + Kp) + Kp8
_2 = i (148) _"

21mk0

It follows then that the eigenvalues to order _2 are

/ (,:X = -+i-_6 + i 2 + (I + U2) _ Kp - _-_ (149)

and the conjugates. The real root boundary and the divergence criterion are °
the same as given for the teetering rotor.

Notice that this is the same result as would have been obtained if a

, constant coefficient approximatiou were made in the rotating frame before

finding the net pitch and roll moments. Actually, the expansion of _ as a

series in U2 is not really for to order _2 the last term in the
necessary,

' characteristic equation (the u4 term in eq. (145)) drops and l may be

found directly, exactly as for the hover case. However, such a procedure does
not show that the solution is not valid for the low frequency mode near I/rev

i (rotating frequency).

• f Near i/rev Frequency

; J This is where the critical region is encountered when the equations have
periodic coefficients, that is, when ImP0 = I. The high frequency mode is

at 2/rev nonrotating frequency, and the roots must remain complex conjugates

1 since this is a constant coefficient equation. Hence, the i/rev critical
region behavior cannot be encountered for this mode. Indeed, the order _2 ,,

result obtained above holds for the _0 + i root, even when Im_0 = 1 (the
upper sign is used in eq. (147), so the first factor has the value 2). The
low frequency mode, however, is at 0/rev nonrotating frequency, so these roots

are able to meet and proceed in opposite directions along the real axis. This
','_ is the i/rev critical region behavior which is allowed for this constant

, coefficient equation because the transformation to the nonrotating frame puts
t these roots near the real axis instead of 1/rev.

i Consider the low frequency mode when Iml0 - I; that is,= -(YO/16) + _2_2 + .... The order _2 characteristic equation is

) 57 , :C
I

, ;'t'

I
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identially zero then (eq. (147), using the lower sign so the first factor has
the value 0 when Iml 0 = 11, and it is necessary to go to order u4 to find
k 2. The order u4 terms in the characteristic equation are for this case

Or

(X2 + = -D 2 (1501

where

. : -_ +z 16j"k321 (1�Kp2)

Setting D2 = 0 gives k2 = -72/16, so _ = -y/16 to order _2. Hence, D2 = 0 -,
is the boundary for two real roots in the nonrotating frame, or the 1/rev
boundary in the rotating frame. In general, the root is

YO <- Y2 D> Y _+u2iD (1511' ), = - T_+ v2 y_±i = - y_

The expressions for _ and D are identical to the corresponding ones for the
teetering rotor, or for the four-bladed gimballed rotor, near the 1/rev criti-

i cal region. Thus, the gimballed rotor with five or more blades encounters a
1/rev critical region, although only the lower frequency mode (near the rual
axis nonrotating) participates in the critical region behavior. _., boundary
of the region, and the solution for _, are the same as were given Jr the

_b./ teeterzng rotor (-i to get to the low frequency nonrotating model. ,

Summary

i The gimballed rotor with five or more blades is described by constant _,

coefficient differential equations. The behavior of the roots is, however, !_
t nearly identical to that of a teetering rotor or a four-bladed gimballed rotor;

the latter is perhaps a better comparison since it is also a case with non-

i'_ rotating degrees of freedom. Away from I/rev rotating frequency, the roots
;_ are given by

= +i -1_ + i 2 + + t121 _ Kp = (152)
i
D
! s,

1974023388-061



and the conjugates. The real root boundary (±l/roy nonrotating) and the
divergence criterion are the same as for the teetering rotor.

A critical region is encountered by this rotor, when the rotating
frequency is near 1/rev. The expressions for the boundary and the roots near
the critical region are the same as for the teetering rotor. Only the lower _
frequency mode participates in the 1/roy critical region, however, for it is
the fact that this mode is near the real axis (nonrotating) that allows the
critical region behavior to occur with a system described by constant coeffi-
cient differential equations. The high frequency modes are near 2/rev for -
this case, and so are still given by equation (152), that is, have the same _,
behavior as away from the critical region.

The equations of motion for the gimballed rotor with N L 5 are identical
to the constant coefficient approximation of the equations for the three or -- •
four-bladed gimballed rotors (i.e., eq. (87) or (157) with the periodic terms
dropped). Hence, the solution for N _ 5 may be considered as a constant

coefficient approximation to the dynamics of the N = 3 or 4 cases.

As a constant coefficient approximation to the N = 4 case, this present
solution gives exactly the correct roots with the exception of the high fre-
quency mode near the 1/rev critical region. These roots for the N = 4 case
encounter the critical rugion along with the lower frequency roots; but for
the constant coefficient approximation s_eh behavior is not allowed for the
high frequency roots if they are to remain complex conjugates. The behavior

, of the low frequency roots is given correctly everywhere, including the 1/revi

, critical region, because in the nonrotating frame that behavior occurs on the

f real axis. Away from the 1/rev critical region, it is, in fact, possible to
make the constant coefficient approximation in the rotating frame, before

' finding the net pitch and roll moments, and still obtain the correct
i expressions for the roots of the four-bladed gimballed rotor.

As a constant coefficient approximation to the N = 5 case, this present
solution is not really good anywhere. The errors are not even order u2 only,
because the three-bladed gimballed rotor encounters the hJrev critical region

i_. where there are order _ effects of forward flight. The order _2 effects
[ on the roots, both away from and near the 1/rev critical region, are, in addi-
I tion, quite different for the N = 3 case.

i

EQUATIONS OF MOTION IN THE NONROTATIN6 FRAME

i

Consider a rotor with N independent blades, each with rotating natural
: , • frequency v. The flap motion of the entire rotor is described by the N
:_ degrees of freedom _(m), and the N rotating equations of motion given above
i (eq. (57)), in contrast to the gimballed rotor, which is described by onlt two

degrees of freedom and equations for all N > 5. As for the gimballed rotor,
:' however, the motion of the rotor with indepen-dentlyflapping blades may also d
t ,

i _ be described in :Le nonrotating frame. The following new degrees of freedom_ are introduced:

ii,
' ' 59
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1 _ B(m)Bo = _"
m= I

N

8no = _" _E_ B(m) cos n_ m

m=l (153)

} ,' 2 8 (m) sin n_bmISns = _"
m= 1

Bim)(_l)m
1

BN/2 = _- m= 1

where 0;m = _ + mAC is the azimuth location of the ruth blade and
A_ = 2_/N is the interval between the blades. The flap motion of the ruth
blade is then given by

Bim) = B0 +_=_(Bnc cos n¢m + 6ns sin ngm) + 8N/2(-1)m (154)

where the sum over n goes from 1 to iN - 1)/2 for N odd, and from 1 to

' iN - 2)/2 for N even. The 6N/2 degree of freedom only appears if N is
even.

This is a Fourier coordinate transformation from the N degrees of
freedom B(m) describing the rotor motion in the rotating frame to the N

, degrees of freedom B0, 8nc, Bns, BN/2 describing the rotor motion in the
nonrotating frame (for further discussion, see, i.e., ref. 13). The 80
variable is the rotor coning motion; 81c and 81s are the tip path plane longi-
tudinal and lateral tilt degrees of freedom as for the gimballed rotor. The

; I BN/2 motion is similar to the coning except that the blades alternate in up
"-- an_ down motion. This coordinate transformationmust be accompanied by a con-

l version of the equations of motion from the rotating frame (eq. (57)) to the
nonrotating frame. This is accomplished by operating on the equations of
motion with the following summation operators:

' 1 2 2 1
El...), i...)cosn m, mm m m m

(INS)

The summations combine the equations for flap moment equilibrium into the ;
rotor moment equilibrium appropriate to the nonrotating degrees of freedom. _

:. For example, for the coning motion, the first o_erator finds the coning moment; ! ,,I. and for the 81c and Bls motion, the operators fin._the net pitch and roll

! ,

V

. _ _- -,i
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moments on the disk _ was done for the gimballed rotor. The resulting N
equations in the nonrotating frame are coupled, even for the case of a shaft
fixed rotor as here in contrast to the rotating equations, which are not
coupled at all (eq. (57)).

The result of the summation operators depends on the number of blades (N)
where, as here, the equations have periodic coefficients. Hence, the set of
N nonrotating equations depend on N. The complete sets of differential
equations describing the rotor flap motion of N independent blades excited
by blade pitch inputs only are given below for the cases N = 3 and N = 4.

d -

N=3

"Z 0 _--Y-,
12

" I + 0 _ + _ sin 3¢ 2 - u 1-_2cos 3_ Blc8
_ y Y

-2 - ____cos5, _- _ _Tsin _, \_ls/_PlS/ U

i,

I

!

rod. _ (

i I
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The derivation and discussions of these equations may be found in the

literature, for example in references 13 and 18.

The transformation to nonrotating degrees of freedom and equations of

motion has the effect of sweeping the periodic coefficients from the lower

degrees of freedom, especially as N increases. There are, however, always

periodic coefficients in the nonrotating equations where _ > 0, just as there

are in the ro%ating equations, for the same system is being described and a

, constant coefficient set of equations could never give the behavior that has

been found with the periodic coefficients.

The flap dynamics described by these sets of differential equations is
nothing new. This is still a set of N independent blades and simply observ-

ing the motion in the nonrotating frame does not change the nature cf the sys-

tem. Hence, the eigenvalues must still be as calculated above for the case of

a single independent blade; the only change is a -+ni for the 8nc/Bns modes,
that is, a _+n/rev shift in the frequency to account for the transformation

! from rotating to nonrotating frames. The perturbation solution for these

equations, including the influence of the periodic coefficients in forward
flight, has already been obtained then. The value of the description of the

rotor by these nonrotating degrees of freedom and equations lies in its use for

dynamics involving the helicopter body or shaft motion, aerodynamic gust, or

any other excitation from the nonrotating frame. The rotor responds to such

excitation as a whole, in nonrotating modes of motion, so this description of

the rotor motion and moment equilibrium is approFriate for studying such prob-
lems. For the current investigation, the use of these nonrotating equations

' is that they provide a basis for a constant coefficient approximation for the

rotor flap dynamics.

CONSTANT COEFFICIENT APPROXIMATION

As should be quite apparent by now, differential equations with periodic

coefficients require considerably more analysis than constant coefficient
I equations, even to simply find the eigenvalues. Constant coefficient differ-

ential equations are much preferable for the studies of dynamic systems. Can

{ the fl_ dynamics of a helicopter rotor in forward flight be adequately
described by some constant coefficient approximation to the equations of i

motion? The constant coefficient approximations for the teetering and gim- _.
balled rotors were discussed along with their perturbation solutions including

the periodic coefficients; this section will be concerned with the case of
individually flapping blades.

Consider the rotating equation of motion for 8(m) (eq. (57)). Thet •

,_ constant coefficient approximation to that equation, that is, using only the
'" mean values of the coefficients, is
i
{

' q, _ , _ + = , (l, _2) S = o (ISS)

t
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The eigenvalues of which are

The only influence of forward flight is the order _2 increase in the mean of

M0, so in the effectiveness of Kp. Consider this equation and its roots _-_ a
1 representation of the flap dynamics of an independent blade in forward flight.

A correct estimate of the eigenvalues to order u is obtained with such a

representation, except near the ½/rev critical region, simply because neither
this constant coefficient approximation nor the correct solution away from the

_/rev region show any order u effects. To order u2, this approximation is
not correct even away From the critical regions.

With the constant coefficient approximation made in the rotating equation,
the result is virtually just the hover root; so the question of the applica-

bility of that approximation is really whether the hover roots may be used as

a measure of the flap dynamics in forward flight as well as in hover. This
approximation misses the ½/rev and I/rev critical regions entirely, and so
provides no information at all about those effects. Away from the critical

regions, however, the correct roots show only quite small influence of forward

flight, as for example case Cc) in figure 1. This constant coefficient
approximation = that is, the hover root - may be considered a reasonable
representation for such cases. It should be noticed, however, that the
influence of the critical regions becomes greater as _ increases, so this

' approximation _'. st eventually break down for every case.

I The nonrotating equations of motion provide another source of a constant
!

coefficient approximation to the flap dynamics of a rotor with N independent

, blades. The transformation to the nonrotating frame is accomplished first,

i and then the averaged coefficients are found. The harmonics of the coeffici-
. ents of the rotating equation contribute to the constant coefficients in thei"

nonrotating frame, hence, this procedure retains more of the influence of the

periodic coefficients. For N = 3, the resulting equations of motion are

1974023388-067



0 2cl + 0 -yM- - M. 2 1

B 0 M.2c_B,s/_i V -yM_s -2 -YMA +_ a

D

Ic v2 I y 2s 0 2c
+ -yM8 - - _M a -yM. -_X_ IB

0 _ 2c 0 2c v2 i V1V_ -_M a +yS_-_Mg - 'It#'

- -

,' yH0 0 _"HO 0 - KpSo
0 2c

,' = 0 YM0 + _M 0 0 V1c - KPBlcl (160)ls 0 2c k
o o Y"o- "o -KpB,,/

where use has be:n made of the following Fourier series representations )f :he
flap moments in forward flight:

I i o IS 2c !1 MB : M0 + Mo sin _ + MO cos 2_ + .
4

0 MlS 2cM. - M. + . sin _ + M. cos 2_ +
! S _ a B

IC 2s
MB = MB cos _ + Ms sin 2¢ +

f

_ i The missing harmonics is a general result valld for all _ even including the ', I
reverse flow region effects. Substitut_n_ for _Ye harmonics of the flap

moments from equation (2), that is, neglecting reve,:e flow as usual for the I! present order u2 analysis, the equations are

pt.

1

I
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/'_o \'" v_ 0 _'I-_ Bo "

g lc

_- -2 _\BlS/

+ Y v2-1+ 1+ Y=-Kp ; =0 (161)6

Kp_ _ -_{I-_) _2-1+( 1 _2)_Kp ,BlsJ _3 8
m

#,

This is the constant coefficient approximation, in the nonrotating frame, ior
the flap dynami_.so£ a rotor with three independent blades. It may also be
obtained from equation (156), by dropping the 3/rev terms in the coefficieats.

The approximate eigenvalues are then solutions of th. characteristic
equation

.J

[ 1'

t + (2X +__)2. tjL,(l__6)2(1 + Kp2)} _p2 (1_)22(,k + 2Kp)[2;k +_ (1- -_-_--)]

-t_2(1-_-)22(). + 2Kp)2D,2 �_-). p_-(1 +-_ "0 (1,_2)

Only u2 and _h terms appear, so consider an expansion in _2:
= _0 �_2X2•., or _ = _0 +- i + u2X2 + . .., and the conjugates, for

the coning mode and Blc/Bls modes, respectively. The Lock number is also
., expaaded as _ series: _ _ ¥0 + _2Y2 .; and _O is the rotating hover

I roGt as usual:

/,,;_o" " 1-'6 �i4.2Kp - _16J

To order I, the solu¢ion for the r_ots is just X • t0, _0 ± J and their
conjugates, verifying that the above expansion is correct for the hover limit.

,_.

Coning Modes

,_ ,." Consider the coning mode roots in forward flight, that is, the expansion (:

_( X • _0 + u2_2 .. The order _2 lenas in the characteristic eq,_ation _
. +_ give then

' 66
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rof #)r, - _-/ 2010 + 2Kp) + + + =_) 2(A 0 2Kp) 2 0

or

+ - -_-Kp + 4Kp 2 = 0 (163)

Assuming that Inak0 # 1/2, the root to order u2 is then

---Y--+i +(1+_2)_Kp-(_ +_2_ .

(164)

This is exactly the correct result for the eigenvalues away from the critical
regions, that is, equation (24). The real root boundary and divergence crite-
rion for this root are also correct then. This expression also applies for

the coning mode approximate root when Imk0 = I/rev, however, so it misses the
' i/rev critical region.

' Now consider the coning mode root near Imk 0 = 1/2, that is, to order 1

k0 = -{Y0/16) + i/2. The order u2 expansion did not work there, so consider

an order _ expansion: h = k0 + HA 1 + and y = Y0 + _Yl + .. The
order u term of the characteristic equagion is identically zero then, and

, (
_. the order u2 term is

I

+ 2
)_0+ o/ kl+ ,1-'2"1 2{kO 2Kp)k 0 o-

_--" 0

or

,)] (, ,kl �T6]: - i-6- K + k12/ - TKP

/ = -D2 (105)
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The root to order p is then

A = X0 * pA1 = - + _ ± i_D (166)

These are exactly the same expressions for D and _ as were found for the _
_Jrev critical region by the perturbation analysis in the rotating frame,
including the periodic coefficients. So the coning mode of this constant
coefficient approximation encounters the _/rev critical region, with the
correct boundary and roots. Now the roots in a critical region have a pius
and minus increment in the damping due to the periodic coefficients, that is, _"
the roots are not complex conjugates. What is happening to allow the roots of
a constant coefficient approximation to exhibit this critical region behavior
is the following. The low frequency mode roots k0 " i and the conjugate are ~. ,

also at ±_Jrev when Im_ 0 = 1/2. Hence, with the coning and low frequency
mode roots there are a total of four roots, two at _Jrev and two at -_/rev,
which must participate in this _Jrev critical region behavior. Hence, the

_,. critical region behavior can occur while the roots remain as complex conjugate
pairs as is required for constant coefficient equations.

High and Low Frequency Modes

Consider the low frequency and high frequency rotor modes, that is, the
expansion _ = _0 ± i + u_2 + .... Then the order u2 equation is

Y2

(ImX0 ± i) (_2ImX0 - I) 2iImXo)X2 + "_- (_0 + Kp) + lI

• - k_-] (X0±i+2KP)(x 0+2KP) = 0 (167)

Assume for now that ImX0 # 1/2 or 1 for the low frequency rotor mode; then

: Y2 i [._._ YO p_ Y9 ,___0,2(X0+i+2Kp)(_0+2Kp'.]Jk2=- I-5 �21m)_0 _-_+K +T KP'_12/ T +2_m_0 - 1 (1681

t
The roots to order "o2 are then

i
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{ E2,KpP2]}
Y 2 4 - _ Kp + 4Kp 2 2

(169)

and the conjugates. _is result is similar to what was found for the three-

bladed gimballed rotor away from critical regions, so the behavior is familiar ,

from that discussion. The only change, in fact, is a reversal of the signs of
the ± order B2 terms, hence, all the analysis of that case may be used

here.

The main feature of the behavior is that when _ > 0 the real root

intersection of the y loci -.at ±i/rev nonrotating - pulls apart. The order

tJ2 changes in the frequency and damping are in the opposite direction from
what is sho_ in figure 9(c). The closest approach of the two br_ches has an
order _ width:

8 YO
, 2{AXlmin = _ _- v (170)

I I
' where Yo/16 = Kp + /v2 + Kp2 is the y for the boundary when _ = O. •

Taking the point of closest approach as the real root boundary, it is then

' I y YO V2 9
' 1--6= i-6 + ....... (171)
--, Jr2 + Kp2 -'

The criterion for divergence stability for these four roots is

b

,. There is this important difference from the case of the three-bladed

' gimballed rotor: this solution does not represent the behavior of any real

, system, but rather is being considered as an approximation to the rotor flap <
: dynamics in forward flight. As such, it has then order v2 errors in both _

i 69
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the frequency and damping compared to the correct solution (eq. (24)). Away
from critical regions, the correct solution shows only a small influence of
forward flight anyway, so these errors are probably not large either.

This behavior of the roots n ar the real root boundary has been seen

twice now: with the three-bladed gimballed rotor, and here for the constant _
coefficient approximation to the independent blade dynamics. The origin of
this behavior is the order v, 1/rev term in the flap damping M.. That term

B
gives the 3/rev periodic coefficients for the gimballed rotor which produce !
the term in the radicand of k that gives this behavior. For the constant

coefficient approximation, the flap damping harmonic M_s gives terms cou- "_
B

pling the _lC and _lS motion, producing the observed behavior. With inde-
pendent blades observed in the rotating frame, the loci intersect at the real
axis as is characteristic of root loci; observed in the nonrotating frame, the
behavior is shifted by ±i so it occurs at ±l/rev now, but the blades are
still independent so the root loci still intersect. The root loci of coupled

_.. degrees of freedom do not show that behavior, however; rather they simply pass
close to one another, the minimum separation being a measure of the magnitude
of the coupling. The gimballed rotor couples the blades by requiring that the
rotor move as a whole, in 81c and 81s motion only. The constant coefficient
approximation couples the blades by dropping terms from the equations of
motion describing the independent blades, creating a description of some new
system with coupled degrees of freedom. (How closely the d_mamics of this new
system might represent the rotor with independent blades is what is being

' examined here.)

t When Im_ 0 = 1/2, that is, when the hover rotating frequency is near
½/rev, the low frequency rotor mode (at -½/rev non. _.ing frequency)
encounters the _/rev critical region. It is not _ _ary to go looking for

i this solution, because the only way the coning mode ald exhibit the critical
region behavior with a constant coefficient equation is if the low frequency
mode joins it, so the roots may remain complex conjugates even inside the
critical region. The critical region behavior found is the same as that of
the perturbation solution including the periodic coefficients. So the con-

--, stant cot;fficient approximation gives the correct behavior of these four roots
l near the _z/rev critical region. The high frequency rotor mode (at 5/2/rev

nonrotating freque.cyl does not, however, participate in this behavior.
Indeed, the above result (eq. (16911 is still valid for the X0 + i root even

I when Imh0 = 1/2; the error in that root is then order _.

Now consider the low frequency mode (X0 - i) when ImX0 = 1; these roots
are at 0/rev nonrotating frequency, that is, to order 1 X = -Yo/16. The high

I frequency mode gives no problems in the order u2 characteristic equation
' even when Im_0 = 1, so equation (169) gi_es the roots there. For the low

'_'_ frequency mode, however, the order u2 characteristic equation (eq. (16711 is
i identically zero when ImX0 = 1, so it is necessary to go to order _ to

find _2. The order u_ characteristic equation is, when ImX0 = 1:
t

J
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- 112] _16 - 2K _- _I 11-6-2Kp (_ YO YO_-_+ Kp) + Kp = 0 _'5

or
i

Y2 1 )

where

"f2 ( )!'}

_] +-_- _- 2Kp P _ YO (174)- + - ]-6" 2Kp .._

and the root to order u 2 is

= - y la2 YO YO+ :-_ _- 2Kp + iu2D (175)

This is the critical region behavior again, possible with the constant coeffi-

i cient equations because for this mode the nonrotating roots are at the real
axis. The critical region boundary is given by D2 = O, or the corner _:

i Yo Ay
!b (_-_-Kp)_ (176) :"
• Ia12,1J2 2 = el 4" C 2 '

2

' where here _

I (._)2 ,_2 _ Kp + 4Kp2 1 /yo_2 YO< Cl = - g + 2_12/ + Kp :-_

8 YO
= - g (,o2 - 1) 2 + Kp _ (177)

I

, 71

1974023388-074



= 5-2- + -- (v2 - 1 + p _ _. (v2 _ 1) _-_ - 2Kp

(178)

and Yo/16 = Kp + /v 2 + Kp2 - 1 for the 1/rev _egion as usual. The root may _-
be written then

(v 2 1 -+ i (_ Kp (179) "

_ and the boundary on the y - _ plane is

CI +C
a__ = _2 - 2 (180)16

TO
- Kp

Kp = O, these reduce to Y0/16 = _ - 1,
For

• 8
C1 = - _ (v 2 1) 2 (181)

_0
/i - -i C2 =_ -- +_9_(v 2 1) +-_16 _2(v 2 1) 2 (182)

i

; and the I/rev critical region boundary on the _ - u pl_e becomes

1 1-"6"- 9 (v2 ± _ 1 + . (V2 - i) +- v2(V 2 - 1) 2

(183)

The general behavior o£ the roots in this l/rev critical region is

correct but there are order _2 errors in both the frequency and damping com-

pared to the exact solution. C2, the width of the critical region, is exactly
t_ correct. _ere is an order B2 change in the d_ping (eq. (179)); and the

-: offset o£ the critical region, Cl, is not correct, leading to an order 112

change in the frequency. These order _2 errors correspond to those in the

, expression for the roots away from the critical region (eq. (169)). For
v = I the d_ping change goes to zero, and for v = I and Kp = 0 the offset ._.

) ,:
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CI reduces to zero for both the correct solution and for this approximation;
in gencral, however, there are small errors in the 1/rev critical region
behavior as there were for the roots away from the criti_:alregion.

The coning mode (at I/rev nonrotating frequency) and the high frequency

mode (at 2/rev) do not participate at all in the 1/rev critical region. These _,_
roots are given still by their respective expressions for away from the
critical regions (eqs. (164) and (169)).

Summary

The flapping dynamics of a rotor with three independent blades are
described by a total of six eigenvalues. In the rotating frame, there are
three independent equations; then the eigenvalues occur as two triple poles. _
In the nonrotating frame, the degrees of freedom and equations of motion are

: coupled. There are two eigenvalues at the rotating value for the coning mode,
and four eigenvalues at the rotating values ±i/rev for the high and low fre-
quency rotor modes. Thus, if kR is the rotating elgenvalue, the nvnrotating
roots are kNR = _R, hR ± i (for N = 5). The total number of eigenvalues in
the nonrotating frame is still six for the three-bladed rotor. The constant
coefficient approximation in the nonrotating frame gives results for all six
eigenvalues at once (in general, for all 2N roots of the rotor flap motion).
This approximation gives the following behavior for the roots.

, Away from critical regions (i.e., the hover rotating frequency not near
' h/rev or 1/rev) the two coning mode roots are given by equation (164), which
( I is exactly the result obtained including the periodic coefficients. The four
. 1 roots of the low frequency and high frequency modes are given by equa-
; tion (169), which has order _2 errors in both the frequency and damping.

The effects of forward flight away from the critical region are, in general,i
small, however, so these errors are not too significant.

The four coning and low frequency mode roots encounter the _/rev critical

; region (at ±½/rev nonrotating frequency), with exactly the same behavior as
T., the correct solution (to order _ at least). The two roots of the high fre-

quency mode (at 3/2/rev) do not participate in this behavior, which means an
order _ error. !

1 The four coning and high frequency mode roots do not encounter the llrev :
critical region, which means order _2 errors for these roots. The two roots i

' of the low frequency mode, at the real axis in the nonrotating frame do show !
the critical region behavior. There are, however, in general order _2 4
errors in both the frequency and damping compared to the correct solution,

: corresponding to the behavior of the roots of this mode away from the critical
_ regions. The magnitude of these errors is discussed below in terms of the
( , - _ plane.

:' , Consider the _ - _ plane for _ = I and Kp = 0 (fig. 2). The constant
' ; coefficient approximation has an identical i/rev region boundary but only for _\,_
i : the low frequency rotor mode, that is, two out of the six roots. It has the

| = . ......... lli i iiii i ,, ...........
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same ½/rev region, but only for the coning and low frequency modes {four out
of six). The real root boundary for the coning mode is the same but the
boundary for the high and low frequency modes shows only half the influence of
_. The latter boundary is, _n fact, only the point of closest approach of
these two modes at ±l/rev nonrotating frequency, not an intersection at all.

For _ = 1.1 and Kp = 0 (fig. 4), the y - _ plane of the constant
coefficient approximation has a I/rev region boundary, but only for the low
frequency mode again. The region has the same width for a given _ as the
correct solution, but is offset higher. The error in the boundary is roughly
Ay = 4_ 2, or about Ay = 1 at U = 0.5 (compared to Y0 about seven for the
1/rev region with v = 1.1, as shown in fig. 4). As a result, rotors with y _'"
such that the hover frequency is above 1/rev will have a higher Ucorner by
this approximation. For example, with case (b) above, _ = 1.1 and y = 6, the

I constant coefficient approximation gives _corner = 0.326, compared to the _
correct solution of Vcorner = 0.286. This error in the 1/rev region
boundary - which corresponds to the frequency error away from the critical
region, and so is a measure of the magnitude of that also - is not negligible,

but is small in terms of the Ay shift of the boundary, or even in terms of

the _corner, which is more sensitive to the boundary shifts. The comparisons
of the ½/rev region and real root boundaries for this case follow exactly as
for v = 1, discussed above.

: The constant coefficient approximation to the rotor flap dynamics in
forward flight produces differential equations that do not actually describe
the real rotor any more, and must a3ways give some erroneous results. As a

I [i representation of the actual rotor dynamics, however, the constant coefficientapproximation (in the nonrotating frame] is actually remarkably good. The
: I' influence of forward flight on the roots is given rather well by this approxi-
i mation, the primary error being that the roots of the high frequency rotor

modes do not encounter the critical regions. For this case of N = 3, the
½/rev region is seen by the four roots at ±h/rev, but not b/ the two roots at

,- ±3/2/rev; the 1/rev region is seen by the two roots at the real axis, but not
by the four roots at ±l/rev and ±2/rev. This behavior is fundamental to the
constant coefficient approximation; the roots from that approximation musti

_, always b- complex conjugates, so the critical region behavior can enly be
; exhibited by two roots on the real axis (as the I/rev region her_); or at a

multipl_ ½/rev are roots to participate, two at posi-of when there four the

tire frequency and two at the negative frequency (as the ½/rev region here).
J With these restrictions, the constant coefficient approximation picks up the

critical region behavior of the periodic system whenever possible. The con-
' i stant coefficient approximation in the nonrotating frame is better than in the

[ rotating frame because the transformation to the nonrotating frame shifts the
i frequency of the roots to allow such occurrences. At the least, these results

; I suggest that the constant coefficient approximation is adequate for the low

_.! frequency dynamics of a rotor as for helicopter stability and control
investigations.

; (
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Four-bladed Rotor

Comparing the constant coefficient approximation of equations (156) and
(1S7) for the N = 3 and N = 4 cases, it follows that the four-bladed rotor
only adds the 82 degree of freedom and equation which are completely
decoupled for the constant coefficient approximation. So, to equation (161) t
must be added the equation

for the four-bladed rotor. The roots for this mode are

X = - i--_ _ +

This is the same as the constant coefficient app_.oximation in the rotating
frame which is not very good. All the critical regions are missed and there
are even order _2 errors away from the critical region. The solution for
the other six roots is the same as for the N = 3 case.

Five or More Blades

As the, number of blades increases, more and more modes are added to the

t nonrotating representation of the rotor. For example, N = S has degrees offreedom 80, 81c, 81s, and

, 2i B2c= cos 2,m
m

_-2 (m)
'rlpI., 82s ,_ E 8 sin 2_m
, m

with corresponding roots XNR = XR + 2i. Consequently, more of the low fre-

quency modes will be able to pick up the critical region behavior in the con- ._
stant coefficient approximation. The highest frequency modes always do not

' encounter the critical regions, of course, so the constant coefficient approxi- ._
mation can never give completely correct behavior. This effect of increasing
N parallels the effect on the differential equations. Increasing N tends

: _ to sweep the periodic coefficients from the lower frequency modes; there are
*_. always periodic coefficients present in the degrees of freedom and equations

of the high frequency modes, however.
t
+
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TRANSFER FUNCTIONS

The experimental determination of the eigenvalues, especially the small

increments (order u or even u2) found here, in the harsh aerodynamic envi-

ronment of the helicopter in forward flight, is a difficult task to accomplish _
with accuracy. A more direct measurement - hence, fundamentally more accu-

rate - is the transfer function, that is, the response of the blade flap

motion due to sinusoidal excitation.

Consider the transfer function of the flap response to blade pitch

control, particularly the influence of the periodic coefficients in forward w_

flight, which has led to the special behavior of the eigenvalues. The equa-
tion of motion for an independent blade excited by pitch control inputs only,

in the rotating frame, is _.

+ [v2+_ _ cos @+ _ _2 sin 2@+Kp[_ (i+_2)+ _ _ sin @-_ _2 cos 2@]]8

I
1

I ] The transfer function is defined as the response to sinusoidal input

I 8 = _ei_@, where _ is a complex constant. Taking only the real parts of

both the input and the output is implied. With a constant coefficient differ-
ential equation, the output will also be a sinusoid at frequency m, that is,

i 8 = _e i_@. The differential equation relates the output E to the input

; by a single complex function H(_), which is the transfer function:

m

' r 8 = H(_) (187)

With a periodic coefficient differential equation, the response to e at
j frequency _ is not just 8 at frequency _. The sinusoidal input at _ is

multiplied by the coefficients which have terms that are also sinusoidal now

with frequencies 1/rev, 2/rev, etc. (fl, 2fl, . .). The product of two sinus-
oidal functions is a sum of sinusoids at the sum and difference of the fre-

quencies. It =ollows then that for a periodic coefficient system an input at

: , frequency _ leads to an output with terms at frequencies _, _ ±l/rev,

_._ _ ±2/rev, etc. The output is then a sum of the form

8

i
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8 _ Ho(m)eim_ ei(m+l)_ ei(m-1)_---- + H+I(_) -;H l(m)
e

+ H+2(_)e i(_+2)_ + H_2(_)e i(_-2)_ + . (188)

where Ho, Hil, H±2, are all the transfer functions o_ the system•

Notice this may be written as 8/_ = H(m, _)eim_, where He, H±I , H±2 , etc.
are the harmonics of a Fourier series representation of a _mction H(_, _),

which is periodic in _ (H(_, 9) is complex, however, so H+n and H_n are not ,-
conjugates)• Equation (188) is a general ,esult for periodic coefficient
differential equations: the dynamic behavior is described by not a single
transfer function, but rather a series of transfer functions. There is the

direct response He, the output at the same frequency as the input; and there

are also now sideband responses Hzn , output at the input frequency _+n/rev.
.: Since for the hover limit u = 0 the present differential equation reduces to

constant coefficients, all the transfer functions but Ho must be zero then.
It will be found, in fact, that Hzn are order un.

Analysis

Assume the input is 0 = _e i_. It is possible to simply substitute into

equation (186) the expansiov for 8 as in equation (188), collect like hat-

, monies, and thus solve for the transfer functions. Following the rest of the

r present investigation, however, an expansion in u will be used which makes

I the analysis more orderly• Expand the as a series inoutput

= 80 + u81 + _282 + .... Since it is known that the output has only time

,. behavior like ei(_Zn)_, there are no other time scales but # in this prob-

i lem. This means there is no critical region behavior in this problem that is

a feature of the eigenvalues only. The critical region behavior is r_placedj-
here by the sideband transfer functions which will be shown to carry equiva-

lent information about the syst£m dynamics. It is therefore also not

I necessary to expand y as a se_c_ in v.

'_ t To order 1 the differential equation is

' _0 + _fiO + (v2 �_Kp)80= _0 (189)

' 1
So 0 = Oe i_¢ gives 80 = gO e1_* with _

I

.=.= (19o)
O

t
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J_

wher_

A_)= -: +_ i_+_2+Kp_ (191)

The order 1 solution is the hover limit as usual; here it is the hover trans- j_
fer function for the response of blade flapping to pitch input. The transfer
function has the usual form for a second order system response, in this case
a heavily damped system with natural frequency _n 2 = v2 _ (y/8)Kp. Notice
that A(i_) is the hover characteristic equation.

The order _ differential equation is _

" = Y---[-2i0- (_+ 1- 2ikp)80]ei(_+l)_
12

+ 1-_ [2i0+ (_- 1 - 2iKp)$o]ei(_-l)_ (192)

Hence, the solution is 81 = 81 ¤+ 81_ei(_-I)_ with the transfer
functions

Y [-_ +2i(u2 v2)]BI +- = 1-2- - (195)

!

_- The order u response is then just the _ -+I/rev sideband functions. The
forcing terms, the right-hand side of equation (192), are the same terms which
gave the order u, _ffrevcritical region for the eigenvalues. That is, near

_ffrevthese terms contributed to the order u secular equation. Hence, the
order u sideband transfer functions at _ -+I/rev constitute behavior of the

system equivalent to the _/rev critical region of the eigenvalues.

The order _2 differential equation is

:_ -[_ sin ,_l �(_ COS , + Kp _ sin *)81

_._

1974023388-081



Substituting for 8, 60, and 8l, the solution is

82 = B2e i_ + _2+e i(= �,B2-e i(=-2)$ (195)

with

A(=) 8. = _ _ Kp A((_)0

A(uOAI (¢_)

i

A1 (_) (196)

where

i
2

AI(_) = A(_ + 1)A(.,- I) = [A(_) - 112 + (2i= + _) (197)

I

Notice that AI(i_} is just the characteristic equation for the 61c/81s! hover roots. The direct response to order _2 is then !

;- _ AI

! �(12)c19, .,

So the order u 2 response contributes to the direct transfer function much as
it does to the eigenvalues away from the critical regions. The order _2

: = correction for the mean of MB is recognizable as usual, and there are other
t_ order _2 effects due to the periodic coefficients. The _ _ 2/rev s_deband
! tr_n.fer functions are
t

1

I

, 7_
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j_

(199) |'_

, Summary

r

The :ransfer functions describing the response of the blade flap motion
to pitch excitation are _-_

So+  2B2
Y =

U e _'" '

E1 ±
H±] = U _ (200)

e

g
H±2 = U2 --2+-

, By measuring the response to a sinusoidal input, it is then possible to verify
the equation representing the flap dynamics. Specifically, it is possible tor'

t verify the periodic coefficients which produce the critical region behavior of' the eigenvalues. There is not, however, any critical region behavior for the
transfer functions, that is, specific ranges of the parameters where there is

" more critical behavior of the response. That is replaced by the ._deband
transfer functions. Hen_c, the transfer function measurement does not provide
experimental demonstration of the critical region behavior, although it does
equivalent infor_at;_u, verifying the equation which produces the critical

j region for the eigenvaiues.

A Point About Exper!mental Technique i

Since the response of a periodic system to input at frequency _ is
output at ¢ -+ n/rev_ for all integers n (although the magnitude of the _,
response decreases with n), it follows that the random excitation technique I

" for measuring the transfer function of a constant coefficient system is not 'i
directly applicable to periodic coefficien*, systems. A random input has all |
frequencies at once, hence, the output is also composed of all frequencies. I

,.-t4 For constant coefficient systems the knowledge that the response at u came
,_ only from the input at _ can be used to determine the transfer function when

the input is random - the entire function at once, in fact. With a periodic _ .
/ coefflcient system, however, the output at _ has contributions from inputs

I ,- at u *- n/rev for all n, so not enough iPformation is available to determine 2_
_ the transfer function.

80

J
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An input at a single frequency _ must be used then and the output at

all harmonics _ ± n/rev measured; this ta_k is performed for the range of
required. This technique is slower than with the random excitation; in addi-

tion, the noise filtering feature of the random input is lost, that is,

accuracy of the measurements is lost.

The problem is that there is not a single transfer function to measure

but rather several• For example, the rotor flap response up to _ = 0.5 or so

would require the measurement of Ho, H±I, and H±2 at least. It is plobably

possible to extend the random excitation techniques to Feriodic systems. It

would be necessary, however, to use a number of inputs with independent

spectra so that enuugh independent measurements are made at each frequency to ,_

determine the required number of transfer functions. In any case, the peri-

odlc system will requ,re more experimental effort than the constant

coefficient system.

Nonrotating Response
L

For the dynamics of the helicopter as a whole, it is the response of the

rotor in the nonrotating frame that is of interest, that is, the response of

the 80, 81c, 81s, etc. degrees of freedom. Similarly, the inputs usually
availabh for the rotor are collective and cyclic pitch control: O0, 01c

_s. He: ;, the transfer functions in the nonrotating frame may be examined,
L_ r.,.Jit_onto the rotating response gi¢en above. The analysis proceeds much

_ove. It is straightforward since there are no critical regions to be

' concerned with or any other singular behavior; it is convenient to use vectors

' of the input and output variables and matrices of the transfer functions (_
( due to 8). The analysis and results are not very illuminating, however,l

because of their complexity.

¢

DISCUSSION OF PREVIOUS WORK

Horvay (re±. I) considered the flap dynamics of a rotor with v = I,

b'l Kp = 0, and no reverse flow eff,--ts. By the substitution

' - 7F _ + u cos _ ._
8=ye ,,

he transformed the flap equation to the s=andard form of Hill's equation:

Y = 0 I,,

' Lwhere f is a periodic function. This equation he solved by the infinite '_

, determinant method of classical theory. The solution produced numerical , _<

81
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results presented as constant Rel lines on the y - _ plane. The
boundaries found were essentially those given in figure 7 although he did not
investigate small enough y to find the 1/rev region. Horvay used the nota-
tion n = y/8, since this is the coefficient of tke flap damping in hover.
Then, in hover and outside the critical regions, ReX = -¥/16 = -n/2. Hence,

he introduced the "apparent damping coefficient" nap, = -2REX. Then _F

napp/n = -ReX/(V/16) takes the values 1 outside the critical regions, 1 to 0
in the stable portions of the critical regions, and less than 0 in the

unstable portiom_ of the critical regions. The use of the notation napp/n
and the parameter nap p for Re½ is found in much of the literature on rotor
flap stability. Horva_ found approximate solutions at high u (to _ = 8) for
several equations which are not true descriptions of the flap dynamics but do '"
illustrate some of the high _ behavior of the real rotor.

Horvay and Yuan (ref. 2) considered blade flap stability for the cas_ of ..
= 1 and no reverse flow but including Kp = O. The roots were found %rom

the transient solution for B, using the results of Floquet theory (a_ out-
lined in Appendix A here). Much of the literature uses this approach, the

_- real differences being the method used tc find the transient solution for B.

Horvay and Yuan used the ripple method to integrate the differential equation.
They presented the numerical results on the _' - v plane for , = 1 and

Kp = 0, -f3/12, and ¢r3/4 (these values of Kp were chosen because they place
exactly at ¥/8 = ¢_ the ½/rev region, the real root, and the 1/rev _gion
boundaries, respectively, when _ = 0). A large azimuth interval was used in
the ripple method but the results compare fairly well with the solution of
Horvay (ref. 1), at least at small _.

Parkus (ref. 3) considered the flap stability for _ = 1, no reverse flow

but Kp _ 0 (with the r,otation k = -Kp). He found the roots from the Floquet
result using an expansion of _ as a series in _ to find the transient

solution. The expansion is the same as is used here away from the critical
, regions since the m_ltiple time scales and expansion of ¥ are not needed

there. Parkus left his result in the form of a quadratic equation %r

o = e2_[_+(Y/16)]', since it is only an order _2 solution, howev_- it is )

; possible to solve explicitly for h. The result is exactly the sma¢ as
_. obtained here for the roots away from the critical regions (eq. (24), with

= 1). Parkus did not recognize, however, that this solution is not valid

for ImX near 1/rev or ½/rev. The assumption that the Bn in the expansion
of 8 are all the same order is violated near the critical regions. Parkus

1 calculated the roots for varying _, for y = 12 avd 14; the behavior of the

roots looks like that in critical regions but really the expressSon for the
roots away from the critical regions is breaking down as the roots approach _;

the ½/rev region. When ImX 0 is near _, the order _2 term in the radicand :_
of X (eq. (24) here) is large so for large enough _ the radicand is '!
negative. The result is two real _oots and an order _2 effect which is far

_-_ from he correct ½/rev region behavior.

!Gessow and Crim (ref. 19) considered the flap stability at high
numerically integrating the equations of motion to find the transient behavior _,

_ of _. Reverse flow was included, as well as the effects of stall, compressi- .:4,_.,.

bility, and large angles. They found the flap motion to be stable at _ = 1 _ _ "__. •

q5
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for y = 2.4 to 14.9, at u = 2.2 for 7 = 2.4 to 7.1, and at U = 3 for

y = 0.6 to 2.4. The motion was unstable at _ = 3 for ¥ = 14.9.

Shulman (ref. 4) considered the flap stability for 9 = i, Kp = 0, and no
reverse flow. He added, however, a second degree of freedom, the first

elastic flapwise bending mode of the articulated blade. His principal solu- _
tion method was simply to numerically integrate the equation of motion. He

found a significant effect of the second degree of freedom for high advance

ratio, _ = 1.0 say, but small influence for U up to 0.5. The equations were

solved for u = 1 and 1.2, but with the neglect of reverse flow the true flap

dynamics are no longer represented at that _. His conclusion that the flap ,_
instability occurs at _ = 1.5 to 1.8 is not correct then; but the importance
of the second degree of freedom at high u is probably qualitatively correct.

Perisho (ref. 5) considered the stability of the flap and pitch dynamics -.
of the blade at high v, for an articulated rotor, Kp # 0, and including
reverse flow aerodynamics. He solved the equations by numerical integration
for the case _ = 1.05, y = 5, and a pitch natural frequency of 10/rev. For

, just the rigid flap degree of freedom, he found the instability boundary at

= 2.2 with Kp = 0, and at _ = 2.45 with Kp = 2, in the I/rev region for
both cases. Adding the torsion degree of freedom reduced the _ for

instability to _ = 1.8 for Kp = 0; and to _ = 1.65 for Kp = 2, in the

½/rev region now. Adding flapwise bending, that is, three degrees of freedom,

reduced the speed for instability still farther to _ = 1.43 for Kp = 2. The
reduction in the stability at high v due to the torsion degree of freedom

appeared to be largely a torsion divergence Jn the reverse flow region.

Shutler and Jones (ref. 6) considered the flap stability for _ = 1 and

Kp = 0, with no reverse flow. They solved for the eigenvalues and for _ by
: a perturbation solution based on the Floquet theory result that the solution

of a periodic coefficient differential equation may be written in the form

= Cleklcul(¢) + C2e_2_u2(¢)

' I where the ei_envectors uI and u2 are periodic (Appendix A). The substitu-
-'I tion 8 = e_u is made into the flap equation and then X and u expanded as

1 series in _ The requirement that all the functions in the expansion of
u(_) must be periodic is equivalent to the requirement in the method of multi-

I _ ple time scales that the successive functions grow no faster than the earlier

ones (the order 1 term of u(_) is the hover limit so it is constant; then
' requiring successive terms in the expansion grow no faster means they can at _

! most be periodic); _he result has the same secular terms as obtained here.
This is basically the method used by Shutler and Jones, although the details

, differed considerably. To treat the critical regions it is necessary to _

'_- quantify the requirement that the frequency be near a multiple of ½/rev. The
present investigation used an expansion of y to do this, while Shucler and
Jones essentially expanded Imk itself (their eq• (25); wi%b the present

notation for k). So contrary to their statement, this expansion (eq. (25)) 0_
does have physical significance, namely, what "close" to a critical region -,_'

means• Similarly, their parameter o also has physical significance: it ;'_'_

' 83 _ _
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gives contours of constant Rel in the critical regions; for example, the
critical region boundary is such a contour. They found the eigenvalues and 6

for the c_ es of _he ½/rev region, the I/rev region, and away from the criti-

cal regior to order _2 everywhere, including in the ½/rev region. Their

results m" , be shown to be equivalent to those obtained here, for u = 1 and

Kp = O; except that here tile½/rev region is only carried to order _. Their

result for the ½/rev region boundary to order v2 has been given above

(eq. (55a)) and illustrated in figure 7. They did not, however, take

advantage of th,_fact they had a perturbation solution to put together

explicit analyti_ expressions for the eigenvalues.

Lowis (ref. 7) ct,,'_ideredthe flap stability for 9 = I and Kp = 0, at
high _ particularly, first without and then with reverse flow effects. He

solved for the roots by the results of Floquet theory, after numerically inte-

grating the equation to find 6. Without reverse flow he found an instability .-.
at about B = 1.42 illthe i/rev region. With reverse flow, the instability

occurred at about B = 2.3, still in the I/rev region. The representation of

the reverse flow aerodynamics used was only approximately correct, however: he

,_ did not account for the azimuth 7ange where the blade is partly in normal flow

and partly in reverse flow. This model has the correct limit for very large

but it is not good at all below _ = i. The behavior of the solution

around _ = 2, that is, including the flap instability, is probably correct
but neither of the solutions (without and with reverse flow) he obtained is

good in the range u = 0.5 to _ = I.S or so.

Wilde, Bramwell, and Smn_erscales (ref. 20) considered flap stability atJ

--*b-- U, including the effects of reverse flow, and presenting results mainly

I I for v = 1 and K, = 0. They considered a teetering rotor also. The solution
• 1 was obtained by use of an analog computer. They found a flapping instability

at about u = 2.25 for _ = 6. The teetering rotor was stable to _ = 5 at
-_ least.

i
Sissingh (ref. 8) considered the flap stability at high u, including

u k 1, Kp _ O, and reverse flow (with the notation P = v, C1 = -Kp; and only
Kp = 0 was used for the results). The aerodynamic coefficients of reverse

I flow were derived and discussed. The solution of the equation of motion was

i obtained by use of an analog cgmputer. The results were presented as stabil- .

I ity boundaries fur several _, on the V - \, plane, with the emphasis on
quite large v, typical of a slowed or stopping rotor. For v = 1, he found

i _ = 2.2 for instability at 7 _ 8 (higher for other values of y).
4

, Stammers (ref. 9) considered the influence of forward flight on the

flutter of the helicopter rotor blade. He found a pertuibation solution by
methods similar to those of Shutler and Jones (ref. 6) nther than the methods

i used in the present work.

Hall (ref. 10) investigated the dynamics of the flap/lag/torsion motion
of the blade. He used Floquet theory to obtain the roots from a numerical

". integration of the equations over one period. He discussed Floquet theory and
, it_ results for a multi-degree of freedom system. He also presented results _ :

i tot a single degree of freedom, that is, just rigid flap. _

' 84
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Sissingh and Kuczynski (ref. ii) extended the earlier work of SissJngh

, (ref. 8) to include the torsion degree of freedt,m; the emphasis again was on

the results for very high u. They showed a qutte significant effect of

torsion ollthe blade stability reducing the _ for instability considerably.

Fer example, with y = 6 the _ for instability was reduced to about 1.7 for

a torsion frequency of 8/rev and to about _ = 1.35 for a frequency of 5/rev.
These boundaries were just a little below those for torsion only; the effect

was largely due to torsional divergence in the reverse flow region where there

is a negative aerodynamic spring and reduced aerodynamic damping on the pitch

motion. Their results compared well with those of Perisho (ref. 5).

Peters and Hohenemser (ref. 12) considered the flap stability including

L i, Kp _ 0, and reverse flow aerodynamics. They used a continuous repre-
sentation of the reverse flow aerodynamic coefficients as obtained by Sissingh

(ref. 8). They solved for the roots by integrating over one period and then _.

using Floquet theory. Their solution compared well with the analog computer

solution of reference 8. They presented the numerical results on the y -

• plane for _ = 1 and Kp = 0, 0.I, -0.i, out to u = 2.5. They found approxi-
L.

,, mately _ = 2.3 for the flap instability in the i/rev region (at y = 9,
higher for other values of y); Kp > 0 increased the _ for instabilxty.

There were possibly some numerical problems with the i/rev boundary at low u

(below 0.5), since the boundaries appear more like order _ than the correct

order u2 behavior (their fig. 3). In addition, the _ = 0 point of the

I/rev region really must shift for Kp _ 0 and not remain always at y = 0 as

shown (their figs. 4 and 5).

, _ Hohenemser and Y_t (ref. 13) investigated the flap dynamics using the

I nonrotating degrees oY freedom and equations including the periodic coeffi-
cients in forward flight. They gave the equations for the case of N = 4.

They solved for the r_ot_ by the methods of reference 12. They discussed the

constant coefficient approximation to the nonrotating equations in forward

i flight but only in the context cF tip path plane tilt feedback control, how-
:- ever (at v = 0.4 with N = 3, ano v = 0.8 with N = 4) They found the con-

stant c_efficient approximation was not bad at low gain, especially for the

low frequency modes but for high gain it could be unconservative.
t

_"j Johnson (ref. 14) considered rotor flap stability including v _ I,

I Kp _ 0, and reverse flow. He obtained perturbation solutions for the cases of
small and large u and small and large _ The small _ solution formed the "

1 basis for the analysis of the individual blade case in the present work. This

report was summarized ir, reference 15, and reference 17 presented a synoptic of
, the small _ results.

Tong (ref. 16) considered the blade flap/lag dynamics. He obtained a
solution by perturbation techniques to handle the nonlinear features of this

,_ problem (i.e., limit cycle instabilities), as well as the influence of forward

" fl" ght.
I Jt '

,. Biggers (ref. 18) considered the flap dynamics for Kp = 0 and no
, rFverse flow but including u _ 1. tie constructed U root loci and y -

i , _.anes for several cases using a numerical calculation of the exact

i _ 8s
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j_

eigenvalues by means of Floquet theory. He presented the nonrotating
equations of motion including the periodic coefficients in forward flight for

N = 3 and N = 4. Then, he considered the constant coefficient approximation
in the nonrotating frame, solving the characteristic equation for the roots of
the system numerically and comparing this constant coefficient approximation

with the exact results (Floquet theory). He examined several cases out to _
p = O.S. The results of this comparison of the exact and constant coefficient

e;genva]ues (both obtained by numerical techniques) are in agreement with the

results of the comparison given here (of corresponding perturbation solutions).
r

CONCLUSIONS _

This report has considered the influence of forward flight on the

flapping stability of several helicopter rotor configurations. The eigen-

values of the motion have been obtained by a perturbation technique which

gives analytic expressions for tt,e roots. Comparison between numerical solu-

. tions for the exact roots and the present perturbation solutions indicates
that the latter are quantitatively accurate to about v = 0.5. (An exception
is near the ½/rev region, where the perturbation solution was carried to only

order u. It should evidently be extended to order v2 as was the rest of

the solution.) In general, for this range of v, the flap motion retain:: the

high aerodynamic damping of hover and so remains very stable in forward ilight.

There exist, however, critical regions due to the periodic coefficients which

are encountered if the hover root frequency is too near a multiple of ½/rev.
' The influence of the critical regions increases with u as the periodic

t coefficients increase. For the usual values of v, Kp, and y, the critical. regions of interest are the ½/rev and the i/rev regions. In a critical region

there is a plus and minus increment in the real part of the root from the
hover value while the frequency remains fixed at a multiple of ½/rev. Hence,

there is a decrement in the stability of the system when a critical region is
encountered. However, the damping change is only order _ in the ½/rev

region, and order _2 in the I/rev region, so the stability decrease is small

and the flap motion remains highly damped in forward flight.
, I

--, For _ order 2 or so, that is, beyond the range ot validity of the

I perturbation solutions obtained here, there can occur a sufficient stability
degradation in a critical region (usually in the I/rev region) so that a flap
instability is encountered.

, These conclusions about the flap stability may generally be found in the

i existing literature on this problem. What the present work adds is explicit
analytic expressions for the eigenvalues of the flap motion, including the

periodic coefficient influence in forward flight Also the behavior ofJ • ,

: ' cantilever (_ > 1), teetering, and gimball,_d rotor configurations is examined
• _1 in addition to that of an independent, articulated blade.

The transfer function of the flap response to blade pitch has been

i considered as an alternative to the eigenvalues fo_ describing the dynamic _..
'_ characteristics of the system. The transfer function indeed is found to

i 974023388-089



represent equivalent information about the dynamics, but with quite different

behavior. The critical region behavior of the eigen',alues is replaced by

sideband transfer functions (response at frequency _ ± n_ to input at
frequency _).

The constant coefficient approximation to the flap equations of motion in _
the nonrotating frame was investigated and the eigenvalues compared w%1:h the

solutions including the periodic coefficients. Such an approximation (:annot
be entirely correct, of course, but it is remarkably good, especially for the

lower frequency nonrotating modes of the rotor. This implies that for certain

problems - such as the low frequency dynamics of the rotor involving the heli-

copter body motions - the constant coefficient approximation is an adequate "_

representation of the system. The possibility of using the constant coeffi-
cient approximation involves a considerable reduction in the effort required

to analyze and understand the rotor dynamics. It is suggested, therefore, -

that the first step in an investigation involving helicopter rotor forward

flight dynamics should be to check the validity of the constant coefficient

__ approximation by comparing with an exact solution (obtained by numerical tech-
r, niques probably) for the particular problem. The periodic coefficients (in

the nonrotating frame) may not even be needed. If they are required, then the

methods of perturbation theory are very useful in examining the fundamental
behavior.

Lira
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APPENDIX A

PERIODIC SYSTEMS

The forward flight of the helicopter introduces pexiodic coefficients
into the differential equations describing the flap motion due to the periodic
variation of the free-stream velocity seen by the rotating blade. For large
enough u the periodic aerodynamic forces radically influence the behavior of
the root loci, and the analysis techniques required to find the eigenvalues.

The root loci of a constant coefficient system characteristically exhibit
behavior in which two roots start as complex conjugates, meet at the real axis,
and then proceed in opposite directions along the real axis. The existence of q

periodic coefficients in the differential equations describing the motion
generalizes this behavior so that it can occur at any frequency that is a
multiple of ½/rev, that is, at ImX = n/rev or n + ½/rev where n is an

'_- integer, not just at O/rev (the real axis). The property ef the solution that
_" allows this behavior is the fact the eigenvectors are themselves periodic

(instead of constant as for a constant coefficient system; see the mathematics
below). The analysis which demonstrates that periodic systems show this
behavior is called Floquet theory. -_

Thus,the following behavior of root loci is characteristic of periodic
systems (refer to fig. i0). If the parameter being varied, for example, the
advance ratio _ in the present problem, is such that at _ = 0 the system is
not periodic, then the roots start out as complex conjugates (point A on the
loci in fig. i0). As _ increases, the periodic forces increase, and the
roots move toward n/rev (or n + ½/rev) frequency, remaining complex conju-
gates. At some critical _ the loci reach Im_ = n/rev (point B on fig. I0),

i and then for still larger _ the frequency remains fixed at n/rev while the ..
real palt of one root is decreased and that of the other is increased. The
root being destabilized may cross into the rig v* half plane for some
(point C on fig. 10), indicating that the system has become unstable due to
the influence of the periodic coefficients.

".,

' A general system of differential equations with periodic coefficients may
be reduced to a set of first-order equations, and may therefore be written

1 (in matrix notation) as

_x A_ (AI) _

where x is the state vector of the system and A(t) is a periodic matrix of

c_efficients: A(t + T) = A(t). It may be sho_m that the solution to this _
: differential equation can be obtained in the form

_.t _(t) = _. qi(0)eXit_i(t ) (A2) '

_ 88 _
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The _i are the eigenvalues; the eigenvectors u i are periodic:

ui(t + T) = ui(t); and the numbers qi(O) are constants obtained from the
initial conditions. The theory that shows this is called Floquet theory. The
solution in this folnm is a direct extension of the normal solutiop for a con-

stant coefficient differential equation which is characterized b/ constant

eigenvectors (_i independent of time).

The eigenvalues Xi may be obtained by the following procedure. The
equation

¢ = A_ (A3) '

where _(t) is a matrix, is integrated over one period, from t = 0 to

t = T, with the initial conditions _(0) = I (the unit matrix). Then, if Xci
are eigenvaluos of the matrix C = _(T), the roots Xi are given by

Xc = elT, or I = (Zn lc)/T. While the roots Xci (as eigenvalues of a real
matrix C) must appear as real numbers or complex conjugate pairs, the eigen-

£- values Ii are under no such restriction, leading to the behavior of the root
r" loci as described above.

, For a single degree of freedom, second-order system, let xR be the
solution obtained from integrating the equation with the initial conditions _

x(0) = I, x{0) = 0; and let Xp be the solution with initial conditions
x(0) = 0, x(0) = I. Then, the roots _c are given by the quadratic equation:

i

[ t _c2 - [XR(T) + xp(T)]_c + [XR(T)xp(T) - XR(T)xp(T)] = 0 (A4)
/

,e.

)

I

1-
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APPENDIX B

METHOD OF MULTIPLE TIME SCALES

This appendix describes briefly the perturbation technique known as the

method of multiple time scales. It should be used in parallel with the analy-

sis of the flap equation, for many of the steps are more clearly expressed in

the context of a specific example. More details of the method, and examples

of its application may be found in reference 21 (and also ref. 14).

Fundamental to perturbation methods is the existence of a small parameter,
here the advance ratio u; and for the solution of periodic coefficient differ-
ential equations, that the periodic terms be functions of u such that the
equations reduce to constant coefficients when ,, = O. For a study of the

: stability of a system, a solution is required that is uniformly valid over

long time periods, so the long time behavior may be assessed. This leads to
r, the use of the method of multiple time scales. Define a series of time scales

Cn = un4" The time scales 4n are all assumed to be of the same order. Then
for 41 = P$ the actual time 4 must be order u -1, that is, very large com-
pared to the basic scale 40 = 4. The behavior of the solution over several
time scales 4n will be investigated, each implying successively longer time
behavior. The derivatzve with respect to time becomes then

IJ2 BB B + P + +: "

So the assumption of the time scales is equivalent to an expansion of d/d4
as a series in u.

, Next the dependent variable is also expanded as a series ip p:

' B = Bo(4o,_I,_2, .)+ pBz(_o,_I, .)+ •

' The 8n now depend on all the time scales _n" The Bn are all assumed to
be of the same order, for all the long time scale behavior. This requirement

/ is critical to obtaining the solution; it leads, for certain values of the

' free parameters, to critical regions in which there is a reduction in the
stability of the system. In order to investigate the influence of the free

parameters, they aiso are expanded as series in p. In this case, for the
! Lock number y have
_4

Y = Y0 + _Yl + P2Y2 +
, ; ,¢

I
, 90 f
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where the Yn are all of the same order. For certain critical values of
Yn - that is, when y is order p or order p2 from certain critical
values - there will occur a stabilit) degradation due to the influence of the
periodic coefficients.

So now 8, d/d_, and the free parameters are all expanded as series in p.
These are substituted into the differential equation, and then all terms of
like order in u are collected and separately set to zero. Thus, differ-
ential equations are obtained for order 1, _, p2, ., _n, .... With the
expansion of d/de, that is, the use of multiple time scales, these equations
are now partial differential equations for 8n as functions of _n. The
order un equation has the following form: it may be written as a differ-
ential equation for _n(¢0), forced by the lower order solutions. That is, on
the right-hand side there are 8n-l, 8n-2, ., 80 and their derivatives
with respect to cn, cn-1, ., _0. The set of partial differential equa-
tions is solved progressively, beginning with the lowest order equation

.' (order 1), then order _, etc.

_" It is the characteristic of this expansion in p that the un order
equations, written as ordinary differential equations for 8n(_0), all have
the same homogeneous solution. Since the equation for 8n(_0) is forced by
the lower order solutions 8n-1, ., B0, it follows then that when the
known solutions for 8n_1, ., 80 are substituted, the equation for 8n
will be forced by its own homogeneous solution. This would give rise to
solutions for Bn of the form @0 times its homogeneous solution, that is,

, solutions for Bn of order _08n_l, ., _080. Then 8n/Bn_l, ., Bn/80
would be order _0, that is, would become arbitrarily large if _0 is large

I enough. This violates the assumption that Bn is of the same order as
8n-1, • ., 80. The only way such a solution may be avoided is if the coef-

1 ficient of the homogeneous solution on the right-hand side of the _n order

i equation for 8n(_0) is itself set to zero. This coefficient of the homogene-
ous solution forcing the equation for Bn(¢0 ) is called the secular term. The

. secular term is set to zero so that the solution for fln will be uniformly
valid for all time, that is, for large _0.

J
'-._ Now the right-hand side of the 8n equation itself involves derivatives

i of 8n-1, ., B0 with respect to the time scales _n, ., _0- At thisstage in the analysis, considering the _n order equation, some of the solu-
tion for B is known already. What is not known is the behavior of Bn-1

I with respect to _1, _2, ., the behavior of 8n-2 with respect to r

_2, ., and so on down to 80 with resoect to _n" Hence, these combina-
' tions of the dependent and independent variables remain on the right-hand side

of the 8n(¢0) equation when the known _lution is substituted. Specifically, ::

these combinations will be in the coefficients of the homogeneous solution,
: " that is, in the secular term. Then, setting the secular term to zero results

_ in a differential equation, _hich may be written as an equation for Bn_l(_l), _"
i forced on the right-hand side by the lower order solutions. This equation }
, will also be forced by its own homogeneous solution, and so its secular term ,:

must be set to zero in order to maintain the uniform validity of 8n-1 over
' the _1 time scale. The result is an equation for 8n_2(_2); this process L

is continued down to an equation for 80(¢n).

b, 91
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So the order _n equation produces a set of differential equations for

8n(_0), 8n_l(_l), 8n-2(_2), -, 80(_n). This set of equations is then
solved, for the behavior of 8n with respect to _0, Bn-1 with respect to
$I, and so on down to 80 with respect to _n, thus completing the solution
to order vn. The analysis then proceeds to the order gn+l equation. For
the stability of the system, it is the behavior of 80 with respect to _n _
that is of interest since that gi_s the eigenvalue to order un. The nesting
behavior of the differential equations makes each successive order solution
more involved but the basic procedure remains the same.

1

t

• w" i

4

i

I,
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APPENDIXC

SOLUTION OF THE SECULAR EQUATION

The application of the method of multiple time scales to periodic
- , coefficient differential equations results in secular equations of the form

_BB+ (a + id)B + (b + ic)B = 0 (el)

where B is a complex quantity, and the constants a, b, c, and d are real.
Writing

I

D2 = d2 - (b2 + c2) = d2 - Ib + icl2 (CZ)

D = _ (C3)

it may be verified that the solution of this equation is, for D2 > O:

', 8 = e-a*{A[d-D+i(b+ic)]eiD*+A[d+D.i(b+ ic)]e -iu*} (C4)

t '
where A is a complex constant; for D2 = 0:

B = e'a*(A{[d + i(b _ ic)]¢ + i} + B[d + i(b �ic)])(C5)

l where A and B are real constants;and for D2 < 0:

S = e -a* A[d �l&�� �ic)]eD* + B[d - iD + i(b+ ic)]e-D* (C6)

where A and B are real constants. The limiting case b = c = 0 gives
D = d, so the solution is

" B ': Ae"(a $Ì+D�¤�(C7)

_,,here A is a :omplex constant.

' The regio,,of decreased stability - the critical region - is given by
i D2 < 0. The boundary of .'hecritical regiov is D2 = 0. The behavior of the

, 93
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j_

solution of th_s equation when b or c # 0 is that described fo_ periodic
systems; indeed it will be found that the _ term comes from the periodic
coefficients.

|_

mJ-

J
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